Skip to main content

Advertisement

Log in

Genome-wide analysis of tunicamycin-induced endoplasmic reticulum stress response and the protective effect of endoplasmic reticulum inhibitors in neonatal rat cardiomyocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Tunicamycin (TM) is an inducer of endoplasmic reticulum (ER) stress. However, which genes related to ER stress was induced in cardiomyocytes on a genome-wide scale remains poorly understood. Salubrinal and its derivatives are ER stress inhibitors. However, the cellular protection mechanisms remain unresolved. Neonatal rat cardiomyocytes were cultured from ventricles of one-day-old Wistar rats. Cells were exposed to salubrinal, its derivatives (PP1-12, PP1-24) or vehicle followed by TM treatment at different times. Total RNA was isolated from cells for RNA-sequencing analysis. The expressions of 189, 182, 556, 860, and 1314 genes were changed in cells exposed to TM for 1, 3, 6, 12, and 24 h. Five well-known UPR genes (Hspa5, Hsp90b1, Calr, Ddit3, and Atf4) were significantly increased in a time-dependent manner. Six not well-known genes (Hyou1, Herpud1, Manf, Creld2, Sdf2l1, and Slc3a2) were highlighted to be involved in ER stress. Compared with TM-only treated cells, the expressions of 36 genes upregulated by TM and 74 genes downregulated by TM were reversed by salubrinal. In comparison, 121 genes upregulated by TM and 92 genes downregulated by TM were reversed by PP1-12. Most genes altered by salubrinal are in the category of transcription (1 h) and cell cycle (24 h). Most genes altered by PP1-12 are in the category of response to ER stress (3 h) and cell cycle (24 h). Our findings help elucidate the mechanism for TM treatment and may be useful for future drug screens involved in ER stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yuan L, Cao Y, Knöchel W (2007) Endoplasmic reticulum stress induced by tunicamycin disables germ layer formation in Xenopus laevis embryos. Dev Dynam 236(10):2844–2851

    Article  CAS  Google Scholar 

  2. Boyce M, Yuan J (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13(3):363–373

    Article  CAS  PubMed  Google Scholar 

  3. Minamino T, Komuro I, Kitakaze M (2010) Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circ Res 107(9):1071–1082

    Article  CAS  PubMed  Google Scholar 

  4. Deng Q, Xu C, Wang R, Zheng J, Li S, Jin Q, Yang Y (2015) TN-2 Ameliorates tunicamycin-induced mitochondria and endoplasmic reticulum stress-associated apoptosis in rat dorsal root ganglion neurons. J Mol Neurosci 57(2):314

    Article  CAS  PubMed  Google Scholar 

  5. Quan X, Wang J, Liang C, Zheng H, Zhang L (2015) Melatonin inhibits tunicamycin-induced endoplasmic reticulum stress and insulin resistance in skeletal muscle cells. Biochem Biophys Res Commun 463(4):1102–1107

    Article  CAS  PubMed  Google Scholar 

  6. Hwang HJ, Jung TW, Ryu JY, Hong HC, Choi HY, Seo JA, Kim SG, Kim NH, Choi KM, Choi DS, Baik SH, Yoo HJ (2014) Dipeptidyl petidase-IV inhibitor (gemigliptin) inhibits tunicamycin-induced endoplasmic reticulum stress, apoptosis and inflammation in H9c2 cardiomyocytes. Mol Cell Endocrinol 392(1–2):1–7

    Article  CAS  PubMed  Google Scholar 

  7. Shen M, Wang L, Guo X, Xue Q, Huo C, Li X, Fan L, Wang X (2015) A novel endoplasmic reticulum stress induced apoptosis model using tunicamycin in primary cultured neonatal rat cardiomyocytes. Mol Med Rep 12(4):5149–5154

    CAS  PubMed  Google Scholar 

  8. Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307(5711):935–939

    Article  CAS  PubMed  Google Scholar 

  9. Huang X, Chen Y, Zhang H, Ma Q, Zhang YW, Xu H (2012) Salubrinal attenuates beta-amyloid-induced neuronal death and microglial activation by inhibition of the NF-kappaB pathway. Neurobiol Aging 33(5):1007.e9-17

    PubMed  Google Scholar 

  10. Ladriere L, Igoillo-Esteve M, Cunha DA, Brion JP, Bugliani M, Marchetti P, Eizirik DL, Cnop M (2010) Enhanced signaling downstream of ribonucleic Acid-activated protein kinase-like endoplasmic reticulum kinase potentiates lipotoxic endoplasmic reticulum stress in human islets. J Clin Endocr Metab 95(3):1442–1449

    Article  CAS  PubMed  Google Scholar 

  11. Liu CL, Li X, Hu GL, Li RJ, He YY, Zhong W, Li S, He KL, Wang LL (2012) Salubrinal protects against tunicamycin and hypoxia induced cardiomyocyte apoptosis via the PERK-eIF2alpha signaling pathway. J Geriatr Cardiol 9(3):258–268

    Article  PubMed Central  PubMed  Google Scholar 

  12. Liu J, He KL, Li X, Li RJ, Liu CL, Zhong W, Li S (2012) SAR, cardiac myocytes protection activity and 3D-QSAR studies of salubrinal and its potent derivatives. Curr Med Chem 19(1):1–8

    Article  Google Scholar 

  13. Liu CL, He YY, Li X, Li RJ, He KL, Wang LL (2014) Inhibition of serine/threonine protein phosphatase PP1 protects cardiomyocytes from tunicamycin-induced apoptosis and I/R through the upregulation of p-eIF2alpha. Int J Mol Med 33(3):499–506

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Farber CR (2013) systems-level analysis of genome-wide association data. G3-Genes Genom Genet 3:119–129

    CAS  Google Scholar 

  15. Streets AM, Zhang X, Cao C, Pang Y, Wu X, Xiong L, Yang L, Fu Y, Zhao L, Tang F, Huang Y (2014) Microfluidic single-cell whole-transcriptome sequencing. P Natl Acad Sci USA 111(19):7048–7053

    Article  CAS  Google Scholar 

  16. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  17. Jonikas MC, Collins SR, Denic V, Oh E, Quan EM, Schmid V, Weibezahn J, Schwappach B, Walter P, Weissman JS, Schuldiner M (2009) Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323(5922):1693–1697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Dombroski BA, Nayak RR, Ewens KG, Ankener W, Cheung VG, Spielman RS (2010) Gene expression and genetic variation in response to endoplasmic reticulum stress in human cells. Am J Hum Genet 86(5):719–729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Chow CY, Wolfner MF, Clark AG (2013) Using natural variation in Drosophila to discover previously unknown endoplasmic reticulum stress genes. Proc Natl Acad Sci USA 110(22):9013–9018

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Fan F, Ma G, Li J, Liu Q, Benz JP, Tian C, Ma Y (2015) Genome-wide analysis of the endoplasmic reticulum stress response during lignocellulase production in Neurospora crassa. Biotechnol Biofuels 8:66

    Article  PubMed Central  PubMed  Google Scholar 

  21. Teske BF, Wek S, Bunpo P, Cundiff JK, McClintick JN, Anthony TG, Wek RC (2011) The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol Biol Cell 22(15):4390–4405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Cechowska-Pasko M, Surazynski A, Bankowski E (2009) The effect of glucose deprivation on collagen synthesis in fibroblast cultures. Mol Cell Biochem 327(1–2):211–218

    Article  CAS  PubMed  Google Scholar 

  23. Riezzo I, Neri M, De Stefano F, Fulcheri E, Ventura F, Pomara C, Rabozzi R, Turillazzi E, Fineschi V (2010) The timing of perinatal hypoxia/ischemia events in term neonates: a retrospective autopsy study. HSPs, ORP-150 and COX2 are reliable markers to classify acute, perinatal events. Diagn Pathol 5:49

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kim TY, Kim E, Yoon SK, Yoon JB (2008) Herp enhances ER-associated protein degradation by recruiting ubiquilins. Biochem Biophys Res Commun 369(2):741–746

    Article  CAS  PubMed  Google Scholar 

  25. Apostolou A, Shen Y, Liang Y, Luo J, Fang S (2008) Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death. Exp Cell Res 314(13):2454–2467

    Article  CAS  PubMed  Google Scholar 

  26. Cai S, Bulus N, Fonseca-Siesser PM, Chen D, Hanks SK, Pozzi A, Zent R (2005) CD98 modulates integrin beta1 function in polarized epithelial cells. J Cell Sci 118(Pt 5):889–899

    Article  CAS  PubMed  Google Scholar 

  27. Oh-hashi K, Kanamori Y, Hirata Y, Kiuchi K (2014) Characterization of V-ATPase inhibitor-induced secretion of cysteine-rich with EGF-like domains 2. Cell Biol Toxicol 30(3):127–136

    Article  CAS  PubMed  Google Scholar 

  28. Hartley CL, Edwards S, Mullan L, Bell PA, Fresquet M, Boot-Handford RP, Briggs MD (2013) Armet/Manf and Creld2 are components of a specialized ER stress response provoked by inappropriate formation of disulphide bonds: implications for genetic skeletal diseases. Hum Mol Genet 22(25):5262–5275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Fukuda S, Sumii M, Masuda Y, Takahashi M, Koike N, Teishima J, Yasumoto H, Itamoto T, Asahara T, Dohi K, Kamiya K (2001) Murine and human SDF2L1 is an endoplasmic reticulum stress-inducible gene and encodes a new member of the Pmt/rt protein family. Biochem Biophys Res Commun 280(1):407–414

    Article  CAS  PubMed  Google Scholar 

  30. Tiwari A, Schuiki I, Zhang L, Allister EM, Wheeler MB, Volchuk A (2013) SDF2L1 interacts with the ER-associated degradation machinery and retards the degradation of mutant proinsulin in pancreatic beta-cells. J Cell Sci 126(Pt 9):1962–1968

    Article  CAS  PubMed  Google Scholar 

  31. He YY, Liu CL, Li X, Zhong W, Li S, He KL, Wang LL (2014) Effects of PP1-12, a novel protein phosphatase-1 inhibitor, on ventricular function and remodeling after myocardial infarction in rats. J Cardiovasc Pharm 64(4):360–367

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Biodynamic Optical Imaging Center of Peking University for their assistance with single cell whole transcriptome sequencing. This study was funded by the Ministry Science Foundation of the Chinese People’s Liberation Army during the 12th Five-Year Plan Period (No. BWS12J048) and Major International Science and Technology Cooperation Projects (No. 2013DFA31170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Lun He.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CL., Zhong, W., He, YY. et al. Genome-wide analysis of tunicamycin-induced endoplasmic reticulum stress response and the protective effect of endoplasmic reticulum inhibitors in neonatal rat cardiomyocytes. Mol Cell Biochem 413, 57–67 (2016). https://doi.org/10.1007/s11010-015-2639-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2639-0

Keywords

Navigation