Skip to main content

Advertisement

Log in

GalNAc-T4 putatively modulates the estrogen regulatory network through FOXA1 glycosylation in human breast cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

GALNT4 belongs to a family of N-acetylgalactosaminyltransferases, which catalyze the transfer of GalNAc to Serine or Threonine residues in the initial step of mucin-type O-linked protein glycosylation. This glycosylation type is the most complex post-translational modification of proteins, playing important roles during cellular differentiation and in pathological disorders. Most of the breast cancer subtypes are estrogen receptor positive, and hence, the estrogen pathway represents a key regulatory network. We investigated the expression of GalNAc-T4 in a panel of mammary epithelial cell lines and found its expression is associated with the estrogen status of the cells. FOXA1, a key transcription factor, functions to promote estrogen responsive gene expression by acting as a cofactor to estrogen receptor alpha (ERα), but all the aspects of this regulatory mechanism are not fully explored. This study found that knockdown of GALNT4 expression in human breast cancer cells attenuated the protein expression of ERα, FOXA1, and Cyclin D1. Further, our immunoprecipitation assays depicted the possibility of FOXA1 to undergo O-GalNAc modifications with a decrease of GalNAc residues in the GALNT4 knockdown cells and also impairment in the FOXA1–ERα association. Rescuing GALNT4 expression could restore the interaction as well as the glycosylation of FOXA1. Together, these findings suggest a key role for GalNAc-T4 in the estrogen pathway through FOXA1 glycosylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GALNT4 :

Polypeptide N-acetylgalactosaminyltransferase 4

ERα:

Estrogen receptor alpha

ERβ:

Estrogen receptor beta

FOXA1:

Forkhead box protein A1

VVL:

Vicia Villosa Lectin

UPR:

Unfolded protein response

ERAD:

Endoplasmic reticulum-associated degradation

CRD:

Carbohydrate recognition domain

References

  1. Hart GW, Copeland RJ (2010) Glycomics hits the big time. Cell 143(5):672–676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Schjoldager KT, Clausen H (2012) Site-specific protein O-glycosylation modulates proprotein processing—deciphering specific functions of the large polypeptide GalNAc-transferase gene family. Biochim Biophys Acta 1820(12):2079–2094

    Article  CAS  PubMed  Google Scholar 

  3. Steentoft C et al (2013) Precision mapping of the human O-GalNAc glycoproteome through Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 32(10):1478–1488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Madsen CB et al (2012) Cancer associated aberrant protein O-Glycosylation can modify antigen processing and immune response. PLoS One 7(11):e50139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Brockhausen I (2006) Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions. EMBO Rep 7(6):599–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gill DJ, Clausen H, Bard F (2011) Location, location, location: new insights into O-GalNAc protein glycosylation. Trends Cell Biol 21(3):149–158

    Article  CAS  PubMed  Google Scholar 

  7. Park JH et al (2011) Polypeptide N-acetylgalactosaminyltransferase 6 Disrupts mammary acinar morphogenesis through O-glycosylation of Fibronectin. Neoplasia 13(4):320–326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Park JH et al (2010) Critical roles of mucin 1 glycosylation by transactivated polypeptide N-acetylgalactosaminyltransferase 6 in mammary carcinogenesis. Cancer Res 70(7):2759–2769

    Article  CAS  PubMed  Google Scholar 

  9. American Cancer Society (2013) Breast cancer facts & figures 2013–2014. American Cancer Society, Atlanta

    Google Scholar 

  10. Wright PK et al (2009) Estrogen regulates vesicle trafficking gene expression in EFF-3, EFM-19 and MCF-7 Breast Cancer Cells. Int J Clin Exp Pathol 2(5):463–475

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Neve RM et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Chacko BK et al (2011) Endothelial Surface N-Glycans mediate monocyte adhesion and are targets for anti-inflammatory effects of peroxisome proliferator-activated receptor γ ligands. J Biol Chem 286(44):38738–38747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Eeckhoute J et al (2006) A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. Genes Dev 20(18):2513–2526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Augello MA, Hickey TE, Knudsen KE (2011) FOXA1: master of steroid receptor function in cancer. EMBO J 30(19):3885–3894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Williamson EA et al (2006) BRCA1 and FOXA1 proteins coregulate the expression of the cell cycle-dependent kinase inhibitor p27(Kip1). Oncogene 25(9):1391–1399

    Article  CAS  PubMed  Google Scholar 

  16. Wu C et al (2010) N-Acetylgalactosaminyltransferase-14 as a potential biomarker for breast cancer by immunohistochemistry. BMC Cancer 10:123

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wagner KW et al (2007) Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med 13(9):1070–1077

    Article  CAS  PubMed  Google Scholar 

  18. Lee J et al (2014) Unraveling the regulatory connections between two controllers of breast cancer cell fate. Nucleic Acids Res 42(11):6839–6849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Balázsi G, van Oudenaarden A, Collins JJ (2011) Cellular decision-making and biological noise: from microbes to mammals. Cell 144(6):910–925

    Article  PubMed Central  PubMed  Google Scholar 

  20. Wang ZQ et al (2014) Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: possible implications in abnormal mucin O-glycosylation. Oncotarget 5(2):544–560

    Article  PubMed Central  PubMed  Google Scholar 

  21. Fullwood MJ et al (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462(7269):58–64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Tokunaga E et al (2014) Molecular mechanisms regulating the hormone sensitivity of breast cancer. Cancer Sci 105(11):1377–1383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hurtado A et al (2011) FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet 43(1):27–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ross-Innes CS et al (2012) Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481(7381):389–393

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Gong C et al (2015) FOXA1 repression is associated with loss of BRCA1 and increased promoter methylation and chromatin silencing in breast cancer. Oncogene 34(39):5012–5024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Manavathi B et al (2013) Derailed estrogen signaling and breast cancer: an authentic couple. Endocr Rev 34(1):1–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Balogh P et al (2013) Estrogen receptor alpha is expressed in mesenteric mesothelial cells and is internalized in caveolae upon freund’s adjuvant treatment. PLoS One 8(11):e79508

    Article  PubMed Central  PubMed  Google Scholar 

  28. Mehta RJ et al (2012) FOXA1 is an independent prognostic marker for ER-positive breast cancer. Breast Cancer Res Treat 131(3):881–890

    Article  CAS  PubMed  Google Scholar 

  29. Manavathi B, Samanthapudi VS, Gajulapalli VN (2014) Estrogen receptor coregulators and pioneer factors: the orchestrators of mammary gland cell fate and development. Front Cell Dev Biol 2:34

    Article  PubMed Central  PubMed  Google Scholar 

  30. Gill DJ et al (2010) Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. J Cell Biol 189(5):843–858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Gill DJ et al (2013) Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness. Proc Natl Acad Sci USA 110(34):E3152–E3161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Bard F et al (2003) Src Regulates Golgi Structure and KDEL receptor-dependent retrograde transport to the endoplasmic reticulum. J Biol Chem 278(47):46601–46606

    Article  CAS  PubMed  Google Scholar 

  33. Hassan H et al (2000) The lectin domain of UDP-N-acetyl-D-galactosamine:polypeptideN-acetylgalactosaminyltransferase-T4 directs its glycopeptide specificities. J Biol Chem 275(49):38197–38205

    Article  CAS  PubMed  Google Scholar 

  34. Bennett EP et al (1998) Cloning of a human UDP-N-acetyl-α-D-galactosamine:polypeptideN-Acetylgalactosaminyltransferase that complements other GalNAc-transferases in complete O-glycosylation of the MUC1 tandem repeat. J Biol Chem 273(46):30472–30481

    Article  CAS  PubMed  Google Scholar 

  35. Housley MP et al (2008) O-GLCNAC Regulates FoxO activation in response to glucose. J Biol Chem 283(24):16283–16292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Wells L, Vosseller K, Hart GW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291(5512):2376–2378

    Article  CAS  PubMed  Google Scholar 

  37. Barondes SH et al (1994) Galectins: a family of animal beta-galactoside-binding lectins. Cell 76(4):597–598

    Article  CAS  PubMed  Google Scholar 

  38. Goletz S, Hanisch FG, Karsten U (1997) Novel alphaGalNAc containing glycans on cytokeratins are recognized invitro by galectins with type II carbohydrate recognition domains. J Cell Sci 110(14):1585–1596

    CAS  PubMed  Google Scholar 

  39. Funakoshi Y, Suzuki T (2009) Glycobiology in the cytosol: the bitter side of a sweet world. Biochim Biophys Acta (BBA) 1790(2):81–94

    Article  CAS  Google Scholar 

  40. Hirayama H et al (2010) Free oligosaccharides to monitor glycoprotein endoplasmic reticulum-associated degradation in saccharomyces cerevisiae. J Biol Chem 285(16):12390–12404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Alonzi DS et al (2008) Glucosylated free oligosaccharides are biomarkers of endoplasmic- reticulum alpha-glucosidase inhibition. Biochem J 409(2):571–580

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Program on Key Basic Research Project (973 Program) (No. 2012CB822103), the National Natural Science Foundation of China (No. 31170774, 31570802), the Fundamental Research Funds for the Central Universities and Development Fund for Collaborative Innovation Center of Glycoscience of Shandong University. We thank Professors Baiqu Huang (Northeast Normal University Changchun, China) and Eric Paul Bennett (Copenhagen center for Glycomics, Denmark) for their collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianing Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1

Human glycosylation array. The clustergram represents fold-regulation of 84 glycosyltransferases in three mammary epithelial cells MCF10A, T47D and MDAMB231, including GALNT4 which is the first glycosyltransferase on the top of this representation. Note that MCF10A was considered as control. Supplementary material 1 (TIFF 9311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niang, B., Jin, L., Chen, X. et al. GalNAc-T4 putatively modulates the estrogen regulatory network through FOXA1 glycosylation in human breast cancer cells. Mol Cell Biochem 411, 393–402 (2016). https://doi.org/10.1007/s11010-015-2601-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2601-1

Keywords

Navigation