Skip to main content
Log in

Roles of silkworm endoplasmic reticulum chaperones in the secretion of recombinant proteins expressed by baculovirus system

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Baculovirus expression vector system (BEVS) is widely used for production of recombinant eukaryotic proteins in insect larvae or cultured cells. BEVS has advantages over bacterial expression system in producing post-translationally modified secreted proteins. However, for some unknown reason, it is very difficult for insects to secrete sufficiently for certain proteins of interest. To understand the reasons why insect cells fail to secrete some kinds of recombinant proteins, we here employed three mammalian proteins as targets, EPO, HGF, and Wnt3A, with different secretion levels in BEVS and investigated their mRNA transcriptions from the viral genome, subcellular localizations, and interactions with silkworm ER chaperones. Moreover, we observed that no significantly influence on the secretion amounts of all three proteins when depleting or overexpressing most endogenous ER chaperone genes in cultured silkworm cells. However, among all detected ER chaperones, the depletion of BiP severely decreased the recombinant protein secretion in BEVS, indicating the possible central role of Bip in silkworm secretion pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Suzuki T, Kanaya T, Okazaki H et al (1997) Efficient protein production using a Bombyx mori nuclear polyhedrosis virus lacking the cysteine proteinase gene. J Gen Virol 78:3073–3080

    Article  CAS  PubMed  Google Scholar 

  2. Gómez-Sebastián S, López-Vidal J, Escribano JM (2014) Significant productivity improvement of the baculovirus expression vector system by engineering a novel expression cassette. PLoS One 9:e96562. doi:10.1371/journal.pone.0096562

    Article  PubMed Central  PubMed  Google Scholar 

  3. Hong SM, Yamashita J, Mitsunobu H et al (2010) Efficient soluble protein production on transgenic silkworms expressing cytoplasmic chaperones. Appl Microbiol Biotechnol 87:2147–2156. doi:10.1007/s00253-010-2617-0

    Article  CAS  PubMed  Google Scholar 

  4. Jarvis DL (2003) Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology 310:1–7. doi:10.1016/S0042-6822(03)00120-X

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286:1882–1888. doi:10.1126/science.286.5446.1882

    Article  CAS  PubMed  Google Scholar 

  6. Kleizen B, Braakman I (2004) Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16:343–349. doi:10.1016/j.ceb.2004.06.012

    Article  CAS  PubMed  Google Scholar 

  7. Hampton RY (2002) ER-associated degradation in protein quality control and cellular regulation. Curr Opin Cell Biol 14:476–482. doi:10.1016/S0955-0674(02)00358-7

    Article  CAS  PubMed  Google Scholar 

  8. Ruggiano A, Foresti O, Carvalho P (2014) Quality control: ER-associated degradation: protein quality control and beyond. J Cell Biol 204:869–879. doi:10.1083/jcb.201312042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Shen X, Zhang K, Kaufman RJ (2004) The unfolded protein response–a stress signaling pathway of the endoplasmic reticulum. J Chem Neuroanat 28:79–92. doi:10.1016/j.jchemneu.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  10. Schröder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569:29–63. doi:10.1016/j.mrfmmm.2004.06.056

    Article  PubMed  Google Scholar 

  11. Cao SS, Kaufman RJ (2012) Unfolded protein response. Curr Biol 22:R622–R626. doi:10.1016/j.cub.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  12. Xu C, Bailly-Maitre B, Reed J (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Investig 115:2656–2664. doi:10.1172/JCI26373.2656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Mon H, Li Z, Kobayashi I et al (2013) Soaking RNAi in Bombyx mori BmN4-SID1 cells arrests cell cycle progression. J Insect Sci 13:155. doi:10.1673/031.013.15501

    Article  PubMed Central  PubMed  Google Scholar 

  14. Xu J, Mon H, Kusakabe T et al (2013) Establishment of a soaking RNA interference and Bombyx mori nucleopolyhedrovirus (BmNPV)-hypersensitive cell line using Bme21 cell. Appl Microbiol Biotechnol 97:10435–10444. doi:10.1007/s00253-013-5279-x

    Article  CAS  PubMed  Google Scholar 

  15. Delorme E, Lorenzini T, Giffin J (1992) Role of glycosylation on the secretion and biological activity of erythropoietin. Biochemistry 31:9871–9876

    Article  CAS  PubMed  Google Scholar 

  16. Kobayashi Y, Nakamura N, Ishizaka T et al (2001) Molecular cloning of feline hepatocyte growth factor (HGF) cDNA. J Vet Med Sci 63:211–214

    Article  CAS  PubMed  Google Scholar 

  17. Roelink H, Nusse R (1991) Expression of two members of the Wnt family during mouse development–restricted temporal and spatial patterns in the developing neural tube. Genes Dev 5:381–388. doi:10.1101/gad.5.3.381

    Article  CAS  PubMed  Google Scholar 

  18. Soejima Y, Lee JM, Nagata Y et al (2012) Comparison of signal peptides for efficient protein secretion in the baculovirus-silkworm system. Cent Eur J Biol 8:1–7. doi:10.2478/s11535-012-0112-6

    Google Scholar 

  19. Ono C, Nakatsukasa T, Nishijima Y et al (2007) Construction of the BmNPV T3 bacmid system and Its application to the functional analysis of BmNPV he65. J Insect Biotechnol Sericol 167:161–167

    Google Scholar 

  20. Mon H, Kobayashi I, Ohkubo S et al (2012) Effective RNA interference in cultured silkworm cells mediated by overexpression of Caenorhabditis elegans SID-1. RNA Biol 9:38–44. doi:10.4161/rna.9.1.18084

    Article  Google Scholar 

  21. Li Z, Tatsuke T, Sakashita K et al (2012) Identification and characterization of Polycomb group genes in the silkworm, Bombyx mori. Mol Biol Rep 39:5575–5588. doi:10.1007/s11033-011-1362-5

    Article  CAS  PubMed  Google Scholar 

  22. Li Z, Cheng D, Mon H et al (2013) Cell cycle-dependent recruitment of polycomb proteins to the ASNS promoter counteracts C/ebp-mediated transcriptional activation in Bombyx mori. PLoS One 8:e52320. doi:10.1371/journal.pone.0052320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Imai S, Li Z, Iiyama K, Miyagawa Y (2013) Biologically active human bone morphogenetic protein 4 fused to collagen-binding domain produced in silkworm-baculovirus expression system. J Insect Biotechnol Sericol 44:39–44. doi:10.11416/jibs.82.2_039

    Google Scholar 

  24. Nishikawa S, Brodsky JL, Nakatsukasa K (2005) Roles of molecular chaperones in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD). J Biochem 137:551–555. doi:10.1093/jb/mvi068

    Article  CAS  PubMed  Google Scholar 

  25. Takeuchi M, Kobata A (1991) Structures and functional roles of the sugar chains of human erythropoietins. Glycobiology 1:337–346

    Article  CAS  PubMed  Google Scholar 

  26. Nakamura T (1991) Structure and function of growth. Prog Growth Factor Res 3:67–85

    Article  CAS  PubMed  Google Scholar 

  27. MacDonald BT, Hien A, Zhang X et al (2014) Disulfide bond requirements for active wnt ligands. J Biol Chem 289:18122–18136. doi:10.1074/jbc.M114.575027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hendershot LM, Valentine VA, Lee AS et al (1994) Localization of the gene encoding human BiP/GRP78, the endoplasmic reticulum cognate of the HSP70 family, to chromosome 9q34. Genomics 20:281–284. doi:10.1006/geno.1994.1166

    Article  CAS  PubMed  Google Scholar 

  29. Gething MJ (1999) Role and regulation of the ER chaperone BiP. Semin Cell Dev Biol 10:465–472. doi:10.1006/scdb.1999.0318

    Article  CAS  PubMed  Google Scholar 

  30. Mayer M, Kies U, Kammermeier R, Buchner J (2000) BiP and PDI cooperate in the oxidative folding of antibodies in vitro. J Biol Chem 275:29421–29425. doi:10.1074/jbc.M002655200

    Article  CAS  PubMed  Google Scholar 

  31. Ellgaard L, Frickel E (2003) Calnexin, calreticulin, and ERp57: teammates in glycoprotein folding. Cell Biochem Biophys 39:223–247. doi:10.1385/CBB:39:3:223

    Article  CAS  PubMed  Google Scholar 

  32. Zhang K, Kaufman RJ (2004) Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem 279:25935–25938. doi:10.1074/jbc.R400008200

    Article  CAS  PubMed  Google Scholar 

  33. Walter P, Ron D (2006) The unfolded protein response: from stress pathway to homeostatic regulation. Mol Biotechnol 34:279–290. doi:10.1385/MB:34:2:279

    Article  Google Scholar 

Download references

Acknowledgments

The cost of publication was supported in part by the Research Grant for Young Investigators of Faculty of Agriculture, Kyushu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Man Lee.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imai, S., Kusakabe, T., Xu, J. et al. Roles of silkworm endoplasmic reticulum chaperones in the secretion of recombinant proteins expressed by baculovirus system. Mol Cell Biochem 409, 255–262 (2015). https://doi.org/10.1007/s11010-015-2529-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2529-5

Keywords

Navigation