Skip to main content
Log in

SVVYGLR motif of the thrombin-cleaved N-terminal osteopontin fragment enhances the synthesis of collagen type III in myocardial fibrosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Osteopontin (OPN) is involved in various physiological processes such as inflammatory and wound healing. However, little is known about the effects of OPN on these tissues. OPN is cleaved by thrombin, and cleavage of the N-terminal fragment exposes a SVVYGLR sequence on its C-terminus. In this study, we examined the effects of the thrombin-cleaved OPN fragments on fibroblasts and myocardial fibrosis, particularly the role of the SVVYGLR sequence. The recombinant thrombin-cleaved OPN fragments (N-terminal fragment [N-OPN], C-terminal fragment [C-OPN], and the N-terminal fragment lacking the SVVYGLR sequence [ΔSV N-OPN]) were added to fibroblasts, and the cellular motility, signal activity, and production of collagen were evaluated. A sustained-release gel containing an OPN fragment or SVVYGLR peptide was transplanted into a rat model of ischemic cardiomyopathy and the quantities and ratio of collagen type I (COL I) and type III (COL III) were estimated. N-OPN significantly promoted fibroblast migration. Smad signal activity, expression of smooth muscle actin (SMA), and the production of COL III were enhanced by N-OPN and SVVYGLR peptide. Conversely, ΔSV N-OPN and C-OPN had no effect. In vivo, the expression level of N-OPN was associated with COL III distribution, and the COL III/COL I ratio was significantly increased by the sustained-release gel containing N-OPN or SVVYGLR peptide. The cardiac function was also significantly improved by the N-OPN- or SVVYGLR peptide-released gel treatment. The N-terminal fragment of thrombin-cleaved OPN-induced Smad signal activation, SMA expression, and COL III production, and its SVVYGLR sequence influences this function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barry ST, Ludbrook SB, Murrison E, Horgan CM (2000) A regulated interaction between alpha5beta1 integrin and osteopontin. Biochem Biophys Res Commun 267:764–769

    Article  CAS  PubMed  Google Scholar 

  2. Ito K, Kon S, Nakayama Y, Kurotaki D, Saito Y, Kanayama M et al (2009) The differential amino acid requirement within osteopontin in alpha4 and alpha9 integrin-mediated cell binding and migration. Matrix Biol 28:11–19

    Article  CAS  PubMed  Google Scholar 

  3. Denhardt DT, Noda M, O’Regan AW, Pavlin D, Berman JS (2001) Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 107:1055–1061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Subramanian V, Krishnamurthy P, Singh K, Singh M (2007) Lack of osteopontin improves cardiac function in streptozotocin-induced diabetic mice. Am J Physiol Heart Circ Physiol 292:H673–H683

    Article  CAS  PubMed  Google Scholar 

  5. Agnihotri R, Crawford HC, Haro H, Matrisian LM, Havrda MC, Liaw L (2001) Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin). J Biol Chem 276:28261–28267

    Article  CAS  PubMed  Google Scholar 

  6. O’Regan A, Berman JS (2000) Osteopontin: a key cytokine in cell-mediated and granulomatous inflammation. Int J Exp Pathol 81:373–390

    Article  PubMed Central  PubMed  Google Scholar 

  7. Yokosaki Y, Matsuura N, Sasaki T, Murakami I, Schneider H, Higashiyama S et al (1999) The integrin alpha(9)beta(1) binds to a novel recognition sequence (SVVYGLR) in the thrombin-cleaved amino-terminal fragment of osteopontin. J Biol Chem 274:36328–36334

    Article  CAS  PubMed  Google Scholar 

  8. Smith LL, Cheung HK, Ling LE, Chen J, Sheppard D, Pytela R et al (1996) Osteopontin N-terminal domain contains a cryptic adhesive sequence recognized by alpha9beta1 integrin. J Biol Chem 271:28485–28491

    Article  CAS  PubMed  Google Scholar 

  9. Lenga Y, Koh A, Perera AS, McCulloch CA, Sodek J, Zohar R (2008) Osteopontin expression is required for myofibroblast differentiation. Circ Res 102:319–327

    Article  CAS  PubMed  Google Scholar 

  10. Hamada Y, Nokihara K, Okazaki M, Fujitani W, Matsumoto T, Matsuo M et al (2003) Angiogenic activity of osteopontin-derived peptide SVVYGLR. Biochem Biophys Res Commun 310:153–157

    Article  CAS  PubMed  Google Scholar 

  11. Hamada Y, Yuki K, Okazaki M, Fujitani W, Matsumoto T, Hashida MK et al (2004) Osteopontin-derived peptide SVVYGLR induces angiogenesis in vivo. Dent Mater J 23:650–655

    Article  CAS  PubMed  Google Scholar 

  12. Hamada Y, Egusa H, Kaneda Y, Hirata I, Kawaguchi N, Hirao T et al (2007) Synthetic osteopontin-derived peptide SVVYGLR can induce neovascularization in artificial bone marrow scaffold biomaterials. Dent Mater J 26:487–492

    Article  CAS  PubMed  Google Scholar 

  13. Egusa H, Kaneda Y, Akashi Y, Hamada Y, Matsumoto T, Saeki M et al (2009) Enhanced bone regeneration via multimodal actions of synthetic peptide SVVYGLR on osteoprogenitors and osteoclasts. Biomaterials 30:4676–4686

    Article  CAS  PubMed  Google Scholar 

  14. Uchinaka A, Kawaguchi N, Hamada Y, Mori S, Miyagawa S, Saito A et al (2013) Transplantation of myoblast sheets that secrete the novel peptide SVVYGLR improves cardiac function in failing hearts. Cardiovasc Res 99:102–110

    Article  CAS  PubMed  Google Scholar 

  15. Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C (2001) Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12:2730–2741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G (2001) Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 159:1009–1020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Dobaczewski M, Bujak M, Li N, Gonzalez-Quesada C, Mendoza LH, Wang XF et al (2010) Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction. Circ Res 107:418–428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Collins AR, Schnee J, Wang W, Kim S, Fishbein MC, Bruemmer D et al (2004) Osteopontin modulates angiotensin II-induced fibrosis in the intact murine heart. J Am Coll Cardiol 43:1698–1705

    Article  CAS  PubMed  Google Scholar 

  19. López B, González A, Lindner D, Westermann D, Ravassa S, Beaumont J et al (2013) Osteopontin-mediated myocardial fibrosis in heart failure: a role for lysyl oxidase? Cardiovasc Res 99:111–120

    Article  PubMed  Google Scholar 

  20. Xie Z, Singh M, Singh K (2004) Osteopontin modulates myocardial hypertrophy in response to chronic pressure overload in mice. Hypertension 44:826–831

    Article  CAS  PubMed  Google Scholar 

  21. Renault MA, Robbesyn F, Réant P, Douin V, Daret D, Allières C et al (2010) Osteopontin expression in cardiomyocytes induces dilated cardiomyopathy. Circ Heart Fail 3:431–439

    Article  CAS  PubMed  Google Scholar 

  22. Duerr GD, Mesenholl B, Heinemann JC, Zoerlein M, Huebener P, Schneider P et al (2014) Cardioprotective effects of osteopontin-1 during development of murine ischemic cardiomyopathy. Biomed Res Int 2014:124063

    Article  PubMed Central  PubMed  Google Scholar 

  23. Uchinaka A, Kawaguchi N, Mori S, Hamada Y, Miyagawa S, Saito A et al (2014) Tissue inhibitor of metalloproteinase-1 and -3 improves cardiac function in an ischemic cardiomyopathy model rat. Tissue Eng Part A 20(21–22):3073–3084

    Article  CAS  PubMed  Google Scholar 

  24. Yamamoto M, Takahashi Y, Tabata Y (2003) Controlled release by biodegradable hydrogels enhances the ectopic bone formation of bone morphogenetic protein. Biomaterials 24:4375–4383

    Article  CAS  PubMed  Google Scholar 

  25. Tabata Y, Nagano A, Ikada Y (1999) Biodegradation of hydrogel carrier incorporating fibroblast growth factor. Tissue Eng 5:127–138

    Article  CAS  PubMed  Google Scholar 

  26. Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18:816–827

    Article  CAS  PubMed  Google Scholar 

  27. Dobaczewski M, Chen W, Frangogiannis NG (2011) Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol 51:600–606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Pardo A, Gibson K, Cisneros J, Richards TJ, Yang Y, Becerril C et al (2005) Up-regulation and profibrotic role of osteopontin in human idiopathic pulmonary fibrosis. PLoS Med 2:e251

    Article  PubMed Central  PubMed  Google Scholar 

  29. Hinz B, Gabbiani G (2010) Fibrosis: recent advances in myofibroblast biology and new therapeutic perspectives. F1000 Biol Rep 2:78

  30. Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC (2013) Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 10:15–26

    Article  CAS  PubMed  Google Scholar 

  32. Weber KT (1989) Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol 13:1637–1652

    Article  CAS  PubMed  Google Scholar 

  33. Lapiere CM, Nusgens B, Pierard GE (1977) Interaction between collagen type I and type III in conditioning bundles organization. Connect Tissue Res 5:21–29

    Article  CAS  PubMed  Google Scholar 

  34. Tsukui T, Ueha S, Abe J, Hashimoto S, Shichino S, Shimaoka T et al (2013) Qualitative rather than quantitative changes are hallmarks of fibroblasts in bleomycin-induced pulmonary fibrosis. Am J Pathol 183:758–773

    Article  CAS  PubMed  Google Scholar 

  35. Wolak T, Kim H, Ren Y, Kim J, Vaziri ND, Nicholas SB (2009) Osteopontin modulates angiotensin II-induced inflammation, oxidative stress, and fibrosis of the kidney. Kidney Int 76:32–43

    Article  CAS  PubMed  Google Scholar 

  36. Pauschinger M, Knopf D, Petschauer S, Doerner A, Poller W, Schwimmbeck PL et al (1999) Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation 99:2750–2756

    Article  CAS  PubMed  Google Scholar 

  37. Marijianowski MM, Teeling P, Mann J, Becker AE (1995) Dilated cardiomyopathy is associated with an increase in the type I/type III collagen ratio: a quantitative assessment. J Am Coll Cardiol 25:1263–1272

    Article  CAS  PubMed  Google Scholar 

  38. Kitamura M, Shimizu M, Ino H, Okeie K, Yamaguchi M, Funjno N et al (2001) Collagen remodeling and cardiac dysfunction in patients with hypertrophic cardiomyopathy: the significance of type III and VI collagens. Clin Cardiol 24:325–329

    Article  CAS  PubMed  Google Scholar 

  39. Yoshikane H, Honda M, Goto Y, Morioka S, Ooshima A, Moriyama K (1992) Collagen in dilated cardiomyopathy–scanning electron microscopic and immunohistochemical observations. Jpn Circ J 56:899–910

    Article  CAS  PubMed  Google Scholar 

  40. Bishop JE, Greenbaum R, Gibson DG, Yacoub M, Laurent GJ (1990) Enhanced deposition of predominantly type I collagen in myocardial disease. J Mol Cell Cardiol 22:1157–1165

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomasa Kawaguchi.

Ethics declarations

Conflict of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1045 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchinaka, A., Hamada, Y., Mori, S. et al. SVVYGLR motif of the thrombin-cleaved N-terminal osteopontin fragment enhances the synthesis of collagen type III in myocardial fibrosis. Mol Cell Biochem 408, 191–203 (2015). https://doi.org/10.1007/s11010-015-2495-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2495-y

Keywords

Navigation