Skip to main content

Advertisement

Log in

Rac1 GTPase-deficient HeLa cells present reduced DNA repair, proliferation, and survival under UV or gamma irradiation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Rac1 GTPase controls essential cellular functions related to the cytoskeleton, such as motility and adhesion. Rac1 is overexpressed in many tumor cells, including breast cancers, where it is also involved in the proliferation and checkpoint control necessary for the cell’s recovery after exposure to ionizing radiation. However, its role in DNA damage and repair remains obscure in other tumor cells and under different genotoxic conditions. Here, we compare HeLa cells with mutants exogenously expressing a dominant-negative Rac1 (HeLa-Rac1-N17) by their responses to DNA damage induced by gamma or UV radiation. In HeLa cells, these treatments led to increased levels of active Rac1 (Rac1-GTP) and of stress fibers, with a diminished ability to migrate compared to untreated cells. However, the reduction of Rac1-GTP in Rac1-N17-deficient clones resulted in much higher levels of polymerized stress fibers accompanied by a strong impairment of cell migration, even after both radiation treatments. With regard to proliferation and genomic stability, dominant-negative Rac1 cells were more sensitive to gamma and UV radiation, exhibiting reduced proliferation and survival consistent with increased DNA damage and delayed or reduced DNA repair observed in this Rac1-deficient clone. The DNA damage response, as indicated by pH2AX and pChk1 levels, was increased in HeLa cells but was not effectively triggered in the Rac1-N17 clone after radiation treatment, which is likely the main cause of DNA damage accumulation. These data suggest that Rac1 GTPase plays an important role in signaling and contributes to the sensitivity of cervical cancer cells under UV or gamma radiation treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

6-4PP:

Pyrimidine (6-4) pyrimidone photoproduct

8-oxoG:

8-Oxo-7,8-dihydroguanine

AML:

Acute myeloid leukemia

ATM:

Ataxia telangiectasia mutated kinase

ATR:

Ataxia telangiectasia mutated-related kinase

BSA:

Bovine serum albumin

CPD:

Cyclobutane pyrimidine dimmer

DAPI:

Dilactate 4′,6-di-amino-2-phenylindole

DDR:

DNA damage response

DME:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

DNA:

Deoxyribonucleic acid

DSB:

Double-strand break

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

FBS:

Fetal bovine serum

FDR:

False-discovery rate algorithm

G2/M:

Gap 2/mitosis transition of cell cycle

GAP:

GTPase-activating proteins

GDP:

Guanosine diphosphate

GEF:

Guanine exchange factor

GO:

Gene ontology

GTP:

Guanosine triphosphate

Gy:

Gray

HR:

Homologous recombination

IPTG:

Isopropyl β-d thiogalactopyranoside

J/m2 :

Joule/meters2

MAPK:

Mitogen-activated protein kinase

MEF:

Mouse embryonic fibroblast

MLC:

Myosin light chain

NER:

Nucleotide excision repair

NHEJ:

Non-homologous end-joining

Nox:

NADPH–oxidase complex

PAGE:

Polyacrylamide gel electrophoresis

PAK:

p21-activating kinase

PBD-GST:

PAK1-binding domain linked to glutathione S-transferase

PBS:

Phosphate buffered saline

PIKK:

Phosphatidylinositol 3-kinase-related kinase protein

PMSF:

Phenylmethylsulfonyl fluoride

PPPI:

Physical protein–protein interaction

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SCGE:

Single-cell gel electrophoresis

SDS:

Sodium dodecyl sulfate

SSB:

Single-strand break

UV:

Ultraviolet radiation

References

  1. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635. doi:10.1038/nature01148

    Article  CAS  PubMed  Google Scholar 

  2. Cherfils J, Chardin P (1999) GEFs: structural basis for their activation of small GTP-binding proteins. Trends Biochem Sci 24:306–311

    Article  CAS  PubMed  Google Scholar 

  3. Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129:865–877. doi:10.1016/j.cell.2007.05.018

    Article  CAS  PubMed  Google Scholar 

  4. Haataja L, Groffen J, Heisterkamp N (1997) Characterization of RAC3, a novel member of the Rho family. J Biol Chem 272:20384–20388

    Article  CAS  PubMed  Google Scholar 

  5. Ladd PD, Butler JS, Skalnik DG (2004) Identification of a genomic fragment that directs hematopoietic-specific expression of Rac2 and analysis of the DNA methylation profile of the gene locus. Gene 341:323–333. doi:10.1016/j.gene.2004.07.019

    Article  CAS  PubMed  Google Scholar 

  6. Debidda M, Williams DA, Zheng Y (2006) Rac1 GTPase regulates cell genomic stability and senescence. J Biol Chem 281:38519–38528. doi:10.1074/jbc.M604607200

    Article  CAS  PubMed  Google Scholar 

  7. Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H, Harbeck N, Schmitt M, Lengyel E (2000) Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 19:3013–3020. doi:10.1038/sj.onc.1203621

    Article  CAS  PubMed  Google Scholar 

  8. Singh A, Karnoub AE, Palmby TR, Lengyel E, Sondek J, Der CJ (2004) Rac1b, a tumor associated, constitutively active Rac1 splice variant, promotes cellular transformation. Oncogene 23:9369–9380. doi:10.1038/sj.onc.1208182

    Article  CAS  PubMed  Google Scholar 

  9. Yan Y, Greer PM, Cao PT, Kolb RH, Cowan KH (2012) RAC1 GTPase plays an important role in gamma-irradiation induced G2/M checkpoint activation. Breast Cancer Res 14:R60. doi:10.1186/bcr3164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ashwell S, Zabludoff S (2008) DNA damage detection and repair pathways—recent advances with inhibitors of checkpoint kinases in cancer therapy. Clin Cancer Res 14:4032–4037. doi:10.1158/1078-0432.CCR-07-5138

    Article  CAS  PubMed  Google Scholar 

  11. Cleaver JE (2011) gammaH2Ax: biomarker of damage or functional participant in DNA repair “all that glitters is not gold!”. Photochem Photobiol 87:1230–1239. doi:10.1111/j.1751-1097.2011.00995.x

    Article  CAS  PubMed  Google Scholar 

  12. Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP, Cheng E, Davis MJ, Goh G, Choi M, Ariyan S, Narayan D, Dutton-Regester K, Capatana A, Holman EC, Bosenberg M, Sznol M, Kluger HM, Brash DE, Stern DF, Materin MA, Lo RS, Mane S, Ma S, Kidd KK, Hayward NK, Lifton RP, Schlessinger J, Boggon TJ, Halaban R (2012) Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 44:1006–1014. doi:10.1038/ng.2359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, Dicara D, Ramos AH, Lawrence MS, Cibulskis K, Sivachenko A, Voet D, Saksena G, Stransky N, Onofrio RC, Winckler W, Ardlie K, Wagle N, Wargo J, Chong K, Morton DL, Stemke-Hale K, Chen G, Noble M, Meyerson M, Ladbury JE, Davies MA, Gershenwald JE, Wagner SN, Hoon DS, Schadendorf D, Lander ES, Gabriel SB, Getz G, Garraway LA, Chin L (2012) A landscape of driver mutations in melanoma. Cell 150:251–263. doi:10.1016/j.cell.2012.06.024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Davis MJ, Ha BH, Holman EC, Halaban R, Schlessinger J, Boggon TJ (2013) RAC1P29S is a spontaneously activating cancer-associated GTPase. Proc Natl Acad Sci USA 110:912–917. doi:10.1073/pnas.1220895110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Cadet J, Douki T, Ravanat JL, Di Mascio P (2009) Sensitized formation of oxidatively generated damage to cellular DNA by UVA radiation. Photochem Photobiol Sci 8:903–911. doi:10.1039/b905343n

    Article  CAS  PubMed  Google Scholar 

  16. Douki T, Reynaud-Angelin A, Cadet J, Sage E (2003) Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry 42:9221–9226. doi:10.1021/bi034593c

    Article  CAS  PubMed  Google Scholar 

  17. Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T (2006) Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci USA 103:13765–13770. doi:10.1073/pnas.0604213103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Pfeifer GP, You YH, Besaratinia A (2005) Mutations induced by ultraviolet light. Mutat Res 571:19–31. doi:10.1016/j.mrfmmm.2004.06.057

    Article  CAS  PubMed  Google Scholar 

  19. Forti FL, Armelin HA (2007) Vasopressin triggers senescence in K-ras transformed cells via RhoA-dependent downregulation of cyclin D1. Endocr Relat Cancer 14:1117–1125. doi:10.1677/ERC-07-0154

    Article  CAS  PubMed  Google Scholar 

  20. Ren XD, Kiosses WB, Schwartz MA (1999) Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J 18:578–585. doi:10.1093/emboj/18.3.578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333. doi:10.1038/nprot.2007.30

    Article  CAS  PubMed  Google Scholar 

  22. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  23. Mendoza-Catalan MA, Cristobal-Mondragon GR, Adame-Gomez J, del Valle-Flores HN, Coppe JF, Sierra-Lopez L, Romero-Hernandez MA, del Carmen Alarcon-Romero L, Illades-Aguiar B, Castaneda-Saucedo E (2012) Nuclear expression of Rac1 in cervical premalignant lesions and cervical cancer cells. BMC Cancer 12:116. doi:10.1186/1471-2407-12-116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Benard V, Bokoch GM (2002) Assay of Cdc42, Rac, and Rho GTPase activation by affinity methods. Methods Enzymol 345:349–359

    Article  PubMed  Google Scholar 

  25. Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    Article  CAS  PubMed  Google Scholar 

  26. Albertinazzi C, Cattelino A, de Curtis I (1999) Rac GTPases localize at sites of actin reorganization during dynamic remodeling of the cytoskeleton of normal embryonic fibroblasts. J Cell Sci 112(Pt 21):3821–3831

    CAS  PubMed  Google Scholar 

  27. Bosco EE, Mulloy JC, Zheng Y (2009) Rac1 GTPase: a “Rac” of all trades. Cell Mol Life Sci 66:370–374. doi:10.1007/s00018-008-8552-x

    Article  CAS  PubMed  Google Scholar 

  28. Rojas E, Lopez MC, Valverde M (1999) Single cell gel electrophoresis assay: methodology and applications. J Chromatogr B Biomed Sci Appl 722:225–254

    Article  CAS  PubMed  Google Scholar 

  29. Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A (2004) H2AX: the histone guardian of the genome. DNA Repair (Amst) 3:959–967. doi:10.1016/j.dnarep.2004.03.024

    Article  CAS  Google Scholar 

  30. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    Article  CAS  PubMed  Google Scholar 

  31. Yan Y, Greer PM, Cao PT, Kolb RH, Cowan KH (2012) RAC1 GTPase plays an important role in gamma-irradiation induced G2/M checkpoint activation. Breast Cancer Res 14:R60. doi:10.1186/bcr3164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Aktories K, Braun U, Rosener S, Just I, Hall A (1989) The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem Biophys Res Commun 158:209–213

    Article  CAS  PubMed  Google Scholar 

  33. Polakis PG, Weber RF, Nevins B, Didsbury JR, Evans T, Snyderman R (1989) Identification of the ral and rac1 gene products, low molecular mass GTP-binding proteins from human platelets. J Biol Chem 264:16383–16389

    CAS  PubMed  Google Scholar 

  34. Bender A, Pringle JR (1989) Multicopy suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified genes including the ras-related gene RSR1. Proc Natl Acad Sci USA 86:9976–9980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Ridley AJ (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16:522–529. doi:10.1016/j.tcb.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  36. Fritz G, Just I, Kaina B (1999) Rho GTPases are over-expressed in human tumors. Int J Cancer 81:682–687. doi:10.1002/(SICI)1097-0215(19990531)81:5<682:AID-IJC2>3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  37. Wilson KF, Erickson JW, Antonyak MA, Cerione RA (2013) Rho GTPases and their roles in cancer metabolism. Trends Mol Med 19:74–82. doi:10.1016/j.molmed.2012.10.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Jordan P, Brazao R, Boavida MG, Gespach C, Chastre E (1999) Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors. Oncogene 18:6835–6839. doi:10.1038/sj.onc.1203233

    Article  CAS  PubMed  Google Scholar 

  39. Cheng G, Diebold BA, Hughes Y, Lambeth JD (2006) Nox1-dependent reactive oxygen generation is regulated by Rac1. J Biol Chem 281:17718–17726. doi:10.1074/jbc.M512751200

    Article  CAS  PubMed  Google Scholar 

  40. Abo A, Boyhan A, West I, Thrasher AJ, Segal AW (1992) Reconstitution of neutrophil NADPH oxidase activity in the cell-free system by four components: p67-phox, p47-phox, p21rac1, and cytochrome b-245. J Biol Chem 267:16767–16770

    CAS  PubMed  Google Scholar 

  41. Joneson T, Bar-Sagi D (1998) A Rac1 effector site controlling mitogenesis through superoxide production. J Biol Chem 273:17991–17994

    Article  CAS  PubMed  Google Scholar 

  42. Kang MA, So EY, Simons AL, Spitz DR, Ouchi T (2012) DNA damage induces reactive oxygen species generation through the H2AX-Nox1/Rac1 pathway. Cell Death Dis 3:e249. doi:10.1038/cddis.2011.134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Huelsenbeck SC, Schorr A, Roos WP, Huelsenbeck J, Henninger C, Kaina B, Fritz G (2012) Rac1 protein signaling is required for DNA damage response stimulated by topoisomerase II poisons. J Biol Chem 287:38590–38599. doi:10.1074/jbc.M112.377903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Wartlick F, Bopp A, Henninger C, Fritz G (2013) DNA damage response (DDR) induced by topoisomerase II poisons requires nuclear function of the small GTPase Rac. Biochim Biophys Acta 1833:3093–3103. doi:10.1016/j.bbamcr.2013.08.016

    Article  CAS  PubMed  Google Scholar 

  45. Bopp A, Wartlick F, Henninger C, Kaina B, Fritz G (2013) Rac1 modulates acute and subacute genotoxin-induced hepatic stress responses, fibrosis and liver aging. Cell Death Dis 4:e558. doi:10.1038/cddis.2013.57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Hinterleitner C, Huelsenbeck J, Henninger C, Wartlick F, Schorr A, Kaina B, Fritz G (2013) Rac1 signaling protects monocytic AML cells expressing the MLL-AF9 oncogene from caspase-mediated apoptotic death. Apoptosis 18:963–979. doi:10.1007/s10495-013-0842-6

    Article  CAS  PubMed  Google Scholar 

  47. Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481:287–294. doi:10.1038/nature10760

    Article  CAS  PubMed  Google Scholar 

  48. Eom YW, Yoo MH, Woo CH, Hwang KC, Song WK, Yoo YJ, Chun JS, Kim JH (2001) Implication of the small GTPase Rac1 in the apoptosis induced by UV in Rat-2 fibroblasts. Biochem Biophys Res Commun 285:825–829. doi:10.1006/bbrc.2001.5233

    Article  CAS  PubMed  Google Scholar 

  49. van Leeuwen FN, van Delft S, Kain HE, van der Kammen RA, Collard JG (1999) Rac regulates phosphorylation of the myosin-II heavy chain, actinomyosin disassembly and cell spreading. Nat Cell Biol 1:242–248. doi:10.1038/12068

    Article  PubMed  Google Scholar 

  50. Schmitz AA, Govek EE, Bottner B, Van Aelst L (2000) Rho GTPases: signaling, migration, and invasion. Exp Cell Res 261:1–12. doi:10.1006/excr.2000.5049

    Article  CAS  PubMed  Google Scholar 

  51. Michiels F, Habets GG, Stam JC, van der Kammen RA, Collard JG (1995) A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature 375:338–340. doi:10.1038/375338a0

    Article  CAS  PubMed  Google Scholar 

  52. Zhuge Y, Xu J (2001) Rac1 mediates type I collagen-dependent MMP-2 activation. Role in cell invasion across collagen barrier. J Biol Chem 276:16248–16256

    Article  CAS  PubMed  Google Scholar 

  53. Hwang SY, Jung JW, Jeong JS, Kim YJ, Oh ES, Kim TH, Kim JY, Cho KH, Han IO (2006) Dominant-negative Rac increases both inherent and ionizing radiation-induced cell migration in C6 rat glioma cells. International journal of cancer. Int J Cancer 118:2056–2063. doi:10.1002/ijc.21574

    Article  CAS  PubMed  Google Scholar 

  54. Wertheimer E, Gutierrez-Uzquiza A, Rosemblit C, Lopez-Haber C, Sosa MS, Kazanietz MG (2012) Rac signaling in breast cancer: a tale of GEFs and GAPs. Cell Signal 24:353–362. doi:10.1016/j.cellsig.2011.08.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Ham SA, Hwang JS, Yoo T, Lee H, Kang ES, Park C, Oh JW, Lee HT, Min G, Kim JH, Seo HG (2012) Ligand-activated PPARdelta inhibits UVB-induced senescence of human keratinocytes via PTEN-mediated inhibition of superoxide production. Biochem J 444:27–38. doi:10.1042/BJ20111832

    Article  CAS  PubMed  Google Scholar 

  56. Shiloh Y, Ziv Y (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14:197–210. doi:10.1038/nrm3546

    Article  CAS  Google Scholar 

  57. Alkhalaf M, El-Mowafy AM (2003) Overexpression of wild-type p53 gene renders MCF-7 breast cancer cells more sensitive to the antiproliferative effect of progesterone. J Endocrinol 179:55–62

    Article  CAS  PubMed  Google Scholar 

  58. Katsube T, Mori M, Tsuji H, Shiomi T, Wang B, Liu Q, Nenoi M, Onoda M (2014) Most hydrogen peroxide-induced histone H2AX phosphorylation is mediated by ATR and is not dependent on DNA double-strand breaks. J Biochem 156:85–95. doi:10.1093/jb/mvu021

    Article  CAS  PubMed  Google Scholar 

  59. Hinterleitner C, Huelsenbeck J, Henninger C, Wartlick F, Schorr A, Kaina B, Fritz G (2013) Rac1 signaling protects monocytic AML cells expressing the MLL-AF9 oncogene from caspase-mediated apoptotic death. Apoptosis Int J Progr Cell Death 18:963–979. doi:10.1007/s10495-013-0842-6

    Article  CAS  Google Scholar 

  60. Bopp A, Wartlick F, Henninger C, Kaina B, Fritz G (2013) Rac1 modulates acute and subacute genotoxin-induced hepatic stress responses, fibrosis and liver aging. Cell Death Dis 4:e558. doi:10.1038/cddis.2013.57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Stebel A, Brachetti C, Kunkel M, Schmidt M, Fritz G (2009) Progression of breast tumors is accompanied by a decrease in expression of the Rho guanine exchange factor Tiam1. Oncol Rep 21:217–222

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Andressa P. Costa, Juliana R. Domingos, Benedita Oliveira, and Viviane Q. Machtura for technical assistance. We thank Drs. Margarida M. Hamada and Elizabeth Somessari and all of the staff of the CTRD-IPEN/CNEN, Sao Paulo-SP Brazil, for conducting the gamma irradiation of our samples. We also thank Prof. Dra. Marisa Gennari de Medeiros for allowing us to perform the Comet assays in her laboratory. Additionally, we thank the AJE staff and editors for their editing services, performed on the original version of the manuscript.

Conflict of interest

The authors declare that there are no conflicts of interest.

Funding

This research was supported by the Brazilian agency FAPESP through a Young Investigator Fellowship, #2008/58264-5, to FLF. JHO is recipient of a FAPESP PhD fellowship (142668/2009-5), GETS is the recipient of a CAPES Master Fellowship (2011/05822-3), and YTM is the recipient of a CNPq Scientific Initiation institutional fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Luis Forti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinha, G., Osaki, J.H., Magalhaes, Y.T. et al. Rac1 GTPase-deficient HeLa cells present reduced DNA repair, proliferation, and survival under UV or gamma irradiation. Mol Cell Biochem 404, 281–297 (2015). https://doi.org/10.1007/s11010-015-2388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2388-0

Keywords

Navigation