Skip to main content
Log in

Neonatal hyperglycemia induces oxidative stress in the rat brain: the role of pentose phosphate pathway enzymes and NADPH oxidase

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Recently, the consequences of diabetes on the central nervous system (CNS) have received great attention. However, the mechanisms by which hyperglycemia affects the central nervous system remain poorly understood. In addition, recent studies have shown that hyperglycemia induces oxidative damage in the adult rat brain. In this regard, no study has assessed oxidative stress as a possible mechanism that affects the brain normal function in neonatal hyperglycemic rats. Thus, the present study aimed to investigate whether neonatal hyperglycemia elicits oxidative stress in the brain of neonate rats subjected to a streptozotocin-induced neonatal hyperglycemia model (5-day-old rats). The activities of glucose-6-phosphate-dehydrogenase (G6PD), 6-phosphogluconate-dehydrogenase (6-PGD), NADPH oxidase (Nox), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPx), the production of superoxide anion, the thiobarbituric acid-reactive substances (TBA-RS), and the protein carbonyl content were measured. Neonatal hyperglycemic rats presented increased activities of G6PD, 6PGD, and Nox, which altogether may be responsible for the enhanced production of superoxide radical anion that was observed. The enhanced antioxidant enzyme activities (SOD, CAT, and GSHPx) that were observed in neonatal hyperglycemic rats, which may be caused by a rebound effect of oxidative stress, were not able to hinder the observed lipid peroxidation (TBA-RS) and protein damage in the brain. Consequently, these results suggest that oxidative stress could represent a mechanism that explains the harmful effects of neonatal hyperglycemia on the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Srinivasan V, Spinella PC, Drott HR, Roth CL, Helfaer MA, Nadkarni V (2004) Association of timing, duration, and intensity of hyperglycemia with intensive care unit mortality in critically ill children. Pediatr Crit Care Med 5:329–336

    Article  PubMed  Google Scholar 

  2. Bochicchio GV, Sung J, Joshi M, Bochicchio K, Johnson SB, Meyer W, Scalea TM (2005) Persistent hyperglycemia is predictive of outcome in critically ill trauma patients. J Trauma 58:921–924

    Article  PubMed  Google Scholar 

  3. Hays SP, Smith EO, Sunehag AL (2008) Hyperglycemia is a risk factor for early death and morbidity in extremely low birth-weight infants. Pediatrics 118:1811–1818

    Article  Google Scholar 

  4. Aguilar-Bryan L, Bryan J (2008) Neonatal diabetes mellitus. Endocr Rev 29:265–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Biessels GJ, van der Heide LP, Kamal A, Bleys RL, Gispen WH (2002) Ageing and diabetes: implications for brain function. Eur J Pharmacol 441:1–14

    Article  CAS  PubMed  Google Scholar 

  6. Halliwell B, Gutteridge JMC (2007) Free radical in biology and medicine, 4th edn. Clarendon Press, Oxford

  7. Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9

    Article  CAS  PubMed  Google Scholar 

  8. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  9. Martins RN, Stokes GB, Masters CL (1986) Regulation of liver and brain hexose monophosphate dehydrogenases by insulin and dietary intake in the female rat. Mol Cell Biochem 70:169–175

    Article  CAS  PubMed  Google Scholar 

  10. Serpillon S, Floyd BC, Gupte RS, George S, Kozicky M, Neito V, Recchia F, Stanley W, Wolin MS, Gupte AS (2009) Superoxide production by NAD(P)H oxidase and mitochondria is increased in genetically obese and hyperglycemic rat heart and aorta before the development of cardiac dysfunction. The role of glucose-6-phosphate dehydrogenase-derived NADPH. Am J Physiol Heart Circ Physiol 297:H153–H162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Takada J, Machado MA, Peres SB, Brito LC, Borges-Silva CN, Costa CE, Fonseca-Alaniz MH, Andreotti S, Lima FB (2007) Neonatal streptozotocin-induced diabetes mellitus: a model of insulin resistance associated with loss of adipose mass. Metabolism 56:977–984

    Article  CAS  PubMed  Google Scholar 

  12. Lissi EA, Cáceres T, Videla LA (1986) Visible chemiluminescence from rat brain homogenates undergoing autoxidation. I. Effect of additives and products accumulation. J Free Radic Biol Med 2:63–69

    Article  CAS  PubMed  Google Scholar 

  13. Llesuy SF, Milei J, Molina H, Boveris A, Milei S (1985) Comparison of lipid peroxidation and myocardial damage induced by adriamycin and 4′-epiadriamycin in mice. Tumori 71:241–249

    CAS  PubMed  Google Scholar 

  14. Leong SF, Clark JB (1984) Regional enzyme development in rat brain. Enzymes associated with glucose utilization. Biochem J 218:131–138

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Tian WN, Pignatare JN, Stanton RC (1994) Signal transduction proteins that associate with the platelet-derived growth factor (PDGF) receptor mediate the PDGF-induced release of glucose-6-phosphate dehydrogenase from permeabilized cells. J Biol Chem 269:14798–14805

    CAS  PubMed  Google Scholar 

  16. Guzik TJ, Channon KM (2005) Measurement of vascular reactive oxygen species production by chemiluminescence. Methods Mol Med 108:73–89

    CAS  PubMed  Google Scholar 

  17. Marklund S (1985) Handbook of methods for oxygen radical research. CRC Press, Boca Raton

    Google Scholar 

  18. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  CAS  PubMed  Google Scholar 

  19. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  20. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  21. Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    Article  CAS  PubMed  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  23. Reagan LP, Magariños AM, McEwen BS (1999) Neurological changes induced by stress in streptozotocin diabetic rats. Ann N Y Acad Sci 893:126–137

    Article  CAS  PubMed  Google Scholar 

  24. Aragno M, Parola S, Tamagno E, Brignardello E, Manti R, Danni O, Boccuzzi G (2000) Oxidative derangement in rat synaptosomes induced by hyperglycaemia: restorative effect of dehydroepiandrosterone treatment. Biochem Pharmacol 60:389–395

    Article  CAS  PubMed  Google Scholar 

  25. Kumar JS, Menon VP (1993) Effect of diabetes on levels of lipid peroxides and glycolipids in rat brain. Metabolism 42:1435–1439

    Article  CAS  PubMed  Google Scholar 

  26. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  CAS  PubMed  Google Scholar 

  28. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A (2005) Biomarkers of oxidative damage in human disease. Clin Chem. doi:10.1373/clinchem.2005.061408

    Google Scholar 

  29. Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40:405–412

    Article  CAS  PubMed  Google Scholar 

  30. Chang KC, Chung SY, Chong WS, Suh JS, Kim SH, Noh HK, Seong BW, Ko HJ, Chun KW (1993) Possible superoxide radical-induced alteration of vascular reactivity in aortas from streptozotocin-treated rats. J Pharmacol Exp Ther 266:992–1000

    CAS  PubMed  Google Scholar 

  31. Halliwell B, Gutteridge JM (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:1–85

    Article  CAS  PubMed  Google Scholar 

  32. McLennan SV, Heffernan S, Wright L, Rae C, Fisher E, Yue DK, Turtle JR (1991) Changes in hepatic glutathione metabolism in diabetes. Diabetes 40:344–348

    Article  CAS  PubMed  Google Scholar 

  33. Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50:567–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Gupte SA, Kaminski PM, Floyd B, Agarwal R, Ali N, Ahmad M, Edwards J, Wolin MS (2005) Cytosolic NADPH may regulate differences in basal nox oxidase-derived superoxide generation in bovine coronary and pulmonary arteries. Am J Physiol Heart Circ Physiol 288:H13–H21

    Article  CAS  PubMed  Google Scholar 

  36. Gupte SA, Levine RJ, Gupte RS, Young ME, Lionetti V, Labinskyy V, Floyd BC, Ojaimi C, Bellomo M, Wolin MS, Recchia FA (2006) Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart. J Mol Cell Cardiol 41:340–349

    Article  CAS  PubMed  Google Scholar 

  37. Dringen R, Hoepken H, Minich T, Ruedig C (2007) Pentose phosphate pathway and NADPH metabolism. In: Gibson GE, Dienel GA (Eds) Brain energetics. Integration of molecular and cellular processes. Handbook of neurochemistry and molecular biology, 3rd edn (Lajtha A, series ed.) Springer-Verlag, Berlin, pp 41–62

  38. Ulusu NN, Sahilli M, Avci A, Canbolat O, Ozansoy G, Ari N, Bali M, Stefek M, Stolc S, Gajdosik A, Karasu C (2003) Pentose phosphate pathway, glutathione-dependent enzymes and antioxidant defense during oxidative stress in diabetic rodent brain and peripheral organs: effects of stobadine and vitamin E. Neurochem Res 28:815–823

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi S, Izawa Y, Suzuki N (2012) Astroglial pentose phosphate pathway rates in response to high-glucose environments. ASN Neuro 4:71–88

    Article  CAS  Google Scholar 

  40. Arrick DM, Sun H, Patel KP, Mayhan WG (2011) Chronic resveratrol treatment restores vascular responsiveness of cerebral arterioles in type 1 diabetic rats. Am J Physiol Heart Circ Physiol 301:H696–H703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Mayhan WG, Arrick DM, Patel KP, Sun H (2011) Exercise training normalizes impaired nos-dependent responses of cerebral arterioles in type 1 diabetic rats. Am J Physiol Heart Circ Physiol 300:H1013–H1020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Patel KP, Mayhan WG, Bidasee KR, Zheng H (2011) Enhanced angiotensin II-mediated central sympathoexcitation in streptozotocin-induced diabetes: role of superoxide anion. Am J Physiol Regul Integr Comp Physiol 300:R311–R320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Dikalov S (2011) Cross talk between mitochondria and nadph oxidases. Free Radic Biol Med 51:1289–1301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Afanas’ev I (2010) Signaling of reactive oxygen and nitrogen species in diabetes mellitus. Oxid Med Cell Longev 3:361–373

    Article  PubMed Central  PubMed  Google Scholar 

  45. Sathishsekar D, Subramanian S (2005) Beneficial effects of Momordica charantia seeds in the treatment of STZ-induced diabetes in experimental rats. Biol Pharm Bull 28:978–983

    Article  CAS  PubMed  Google Scholar 

  46. Hong JH, Kim MJ, Park MR, Kwag OG, Lee IS, Byun BH, Lee SC, Lee KB, Rhee SJ (2004) Effects of vitamin E on oxidative stress and membrane fluidity in brain of streptozotocin-induced diabetic rats. Clin Chim Acta 340:107–115

    Article  CAS  PubMed  Google Scholar 

  47. Kumar P, Kale RK, McLean P, Baquer NZ (2012) Antidiabetic and neuroprotective effects of Trigonella foenum-graecum seed powder in diabetic rat brain. Prague Med Rep 113:33–43

    CAS  PubMed  Google Scholar 

  48. Eliza J, Daisy P, Ignacimuthu S (2010) Antioxidant activity of costunolide and eremanthin isolated from Costus speciosus (Koen ex. Retz) Sm. Chem Biol Interact 188:467–472

    Article  CAS  PubMed  Google Scholar 

  49. Wallace DC (1992) Diseases of the mitochondrial DNA. Annu Rev Biochem 61:1175–1212

    Article  CAS  PubMed  Google Scholar 

  50. Williams WM, Weinberg A, Smith MA (2011) Protein modification by dicarbonyl molecular species in neurodegenerative diseases. J Amino Acids 2011:461216

    Article  PubMed Central  PubMed  Google Scholar 

  51. Thornalley PJ (1998) Glutathione-dependent detoxification of alpha-oxoaldehydes by the glyoxalase system: involvement in disease mechanisms and antiproliferative activity of glyoxalase I inhibitors. Chem Biol Interact 111–112:137–151

    Article  PubMed  Google Scholar 

  52. Nakhaee A, Bokaeian M, Akbarzadeh A, Hashemi M (2010) Sodium tungstate attenuate oxidative stress in brain tissue of streptozotocin-induced diabetic rats. Biol Trace Elem Res 136:221–231

    Article  CAS  PubMed  Google Scholar 

  53. Pari L, Murugan P (2007) Tetrahydrocurcumin prevents brain lipid peroxidation in streptozotocin-induced diabetic rats. J Med Food 10:323–329

    Article  CAS  PubMed  Google Scholar 

  54. Pierrefiche G, Topall G, Courboin G, Henriet I, Laborit H (1993) Antioxidant activity of melatonin in mice. Res Commun Chem Pathol Pharmacol 80:211–223

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research Grants from “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq), “Programa de Núcleos de Excelência” (PRONEX), “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES), “Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul” (FAPERGS), and “FINEP Rede Instituto Brasileiro de Neurociências” (IBN-Net #01.06.0842-00). Figure 5 was produced using Servier Medical Art ( www.servier.com ).

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Pereira Rosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosa, A.P., Jacques, C.E.D., de Souza, L.O. et al. Neonatal hyperglycemia induces oxidative stress in the rat brain: the role of pentose phosphate pathway enzymes and NADPH oxidase. Mol Cell Biochem 403, 159–167 (2015). https://doi.org/10.1007/s11010-015-2346-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2346-x

Keywords

Navigation