Skip to main content
Log in

Antimicrobial peptide GW-H1-induced apoptosis of human gastric cancer AGS cell line is enhanced by suppression of autophagy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Gastric cancer is one of the most common malignant cancers worldwide. Due to its poor prognosis and high mortality rate, development of an effective therapeutic method is of urgent need. It has been reported that antimicrobial peptides (AMPs), also known as host-defense peptides, can selectively bind to negatively charged prokaryotic and cancer cell membranes and exert cytotoxicity, without harming normal cells or causing severe drug resistance. We have designed a series of novel cationic AMPs with potent antimicrobial activity against a broad spectrum of bacterial pathogens. In the current study, we evaluated their anticancer potency toward gastric cancer AGS cell line. Cell viability assay revealed that GW-H1 exhibited the lowest IC50 value (less than 20 μM). Flow cytometry showed that upon GW-H1 treatment for 0–24 h, apoptotic cell populations of AGS increased in a dose- and time-dependent manner. Western blot analysis further revealed that upon treatment for 2–6 h, apoptosis-related caspases-3, 7, 8, 9, and PARP were cleaved and activated, while autophagy-related LC3-II and beclin-1 were concomitantly increased. These results indicated that both apoptosis and autophagy were involved in the early stage of GW-H1-induced AGS cell death. However, upon treatment for 12–24 h, LC3-II began to decrease and cleaved beclin-1 increased in a time-dependent manner, suggesting that consecutive activation of caspases cleaved beclin-1 to inhibit autophagy, thus enhancing apoptosis at the final stage. These findings provided support for future application of GW-H1 as a potential anticancer agent for gastric cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kelley JR, Duggan JM (2003) Gastric cancer epidemiology and risk factors. J Clin Epidemiol 56:1–9

    Article  PubMed  Google Scholar 

  2. Guggenheim DE, Shah MA (2013) Gastric cancer epidemiology and risk factors. J Surg Oncol 107:230–236

    Article  PubMed  Google Scholar 

  3. Baeza MR, Giannini TO, Rivera SR, Gonzalez P, Gonzalez J, Vergara E, del Castillo C, Madrid J, Vines E (2001) Adjuvant radiochemotherapy in the treatment of completely resected, locally advanced gastric cancer. Int J Radiat Oncol Biol Phys 50:645–650

    Article  CAS  PubMed  Google Scholar 

  4. Longley DB, Harkin DP, Johnston PG (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338

    Article  CAS  PubMed  Google Scholar 

  5. Cascinu S, Scartozzi M, Labianca R, Catalano V, Silva RR, Barni S, Zaniboni A, D’Angelo A, Salvagni S, Martignoni G (2004) High curative resection rate with weekly cisplatin, 5-fluorouracil, epidoxorubicin, 6S-leucovorin, glutathione, and filgrastim in patients with locally advanced, unresectable gastric cancer: a report from the Italian Group for the Study of Digestive Tract Cancer (GISCAD). Br J Cancer 90:1521–1525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Baker MA, Maloy WL, Zasloff M, Jacob LS (1993) Anticancer efficacy of Magainin 2 and analogue peptides. Cancer Res 53:3052–3057

    CAS  PubMed  Google Scholar 

  7. Chen HM, Wang W, Smith D, Chan SC (1997) Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim Biophys Acta 1336:171–179

    Article  CAS  PubMed  Google Scholar 

  8. Cruciani RA, Barker JL, Zasloff M, Chen HC, Colamonici O (1991) Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc Natl Acad Sci USA 88:3792–3796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Eliassen LT, Berge G, Sveinbjornsson B, Svendsen JS, Vorland LH, Rekdal O (2002) Evidence for a direct antitumor mechanism of action of bovine lactoferricin. Anticancer Res 22:2703–2710

    CAS  PubMed  Google Scholar 

  10. Johnstone SA, Gelmon K, Mayer LD, Hancock RE, Bally MB (2000) In vitro characterization of the anticancer activity of membrane-active cationic peptides. I. Peptide-mediated cytotoxicity and peptide-enhanced cytotoxic activity of doxorubicin against wild-type and p-glycoprotein over-expressing tumor cell lines. Anticancer Drug Des 15:151–154

    CAS  PubMed  Google Scholar 

  11. Ohsaki Y, Gazdar AF, Chen HC, Johnson BE (1992) Antitumor activity of magainin analogues against human lung cancer cell lines. Cancer Res 52:3534–3538

    CAS  PubMed  Google Scholar 

  12. Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ (1991) Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res 51:3062–3066

    CAS  PubMed  Google Scholar 

  13. Yang N, Stensen W, Svendesen JS, Rekdal O (2002) Enhanced antitumor activity and selectivity of lactoferrin-derived peptides. J Pept Res 60:187–197

    Article  CAS  PubMed  Google Scholar 

  14. Yang N, Lejon T, Rekdal O (2003) Antitumor activity and specificity as a function of substitutions in the lipophilic sector of helical lactoferrin-derived peptides. J Pept Sci 9:300–311

    Article  CAS  PubMed  Google Scholar 

  15. Chang WT, Pan CY, Rajanbabu V, Cheng CW, Chen JY (2011) Tilapia (Oreochromis mossambicus) antimicrobial peptide, hepcidin 1-5, shows antitumor activity in cancer cells. Peptides 32:342–352

    Article  CAS  PubMed  Google Scholar 

  16. Chen JY, Lin WJ, Lin TL (2009) A fish antimicrobial peptide, tilapia hepcidin TH2-3, shows potent antitumor activity against human fibrosarcoma cells. Peptides 30:1636–1642

    Article  CAS  PubMed  Google Scholar 

  17. Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1462:11–28

    Article  CAS  PubMed  Google Scholar 

  18. Guo K, Kang NX, Li Y, Sun L, Gan L, Cui FJ (2009) Regulation of HSP27 on NF-kappaB pathway activation may be involved in metastatic hepatocellular carcinoma cells apoptosis. BMC Cancer 9:100

    Article  PubMed Central  PubMed  Google Scholar 

  19. Hsu JC, Lin LC, Tzen JT, Chen JY (2011) Characteristics of the antitumor activities in tumor cells and modulation of the inflammatory response in RAW264.7 cells of a novel antimicrobial peptide, chrysophsin-1, from the red sea bream (Chrysophrys major). Peptides 32:900–910

    Article  CAS  PubMed  Google Scholar 

  20. Huang HN, Rajanbabu V, Pan CY, Chan YL, Wu CJ, Chen JY (2013) A cancer vaccine based on the marine antimicrobial peptide pardaxin (GE33) for control of bladder-associated tumors. Biomaterials 34:10151–10159

    Article  CAS  PubMed  Google Scholar 

  21. Lin WJ, Chien YL, Pan CY, Lin TL, Chen JY, Chiu SJ, Hui CF (2009) Epinecidin-1, an antimicrobial peptide from fish (Epinephelus coioides) which has an antitumor effect like lytic peptides in human fibrosarcoma cells. Peptides 30:283–290

    Article  CAS  PubMed  Google Scholar 

  22. Lin MC, Lin SB, Chen JC, Hui CF, Chen JY (2010) Shrimp anti-lipopolysaccharide factor peptide enhances the antitumor activity of cisplatin in vitro and inhibits HeLa cells growth in nude mice. Peptides 31:1019–1025

    Article  CAS  PubMed  Google Scholar 

  23. Lin MC, Lin SB, Lee SC, Lin CC, Hui CF, Chen JY (2010) Antimicrobial peptide of an anti-lipopolysaccharide factor modulates of the inflammatory response in RAW264.7 cells. Peptides 31:1262–1272

    Article  CAS  PubMed  Google Scholar 

  24. Papo N, Shahar M, Eisenbach L, Shai Y (2003) A novel lytic peptide composed of DL-amino acids selectively kills cancer cells in culture and in mice. J Biol Chem 278:21018–21023

    Article  CAS  PubMed  Google Scholar 

  25. Andreu D, Rivas L (1998) Animal antimicrobial peptides: an overview. Biopolymers 47:415–433

    Article  CAS  PubMed  Google Scholar 

  26. Chou HT, Wen HW, Kuo TY, Lin CC, Chen WJ (2010) Interaction of cationic antimicrobial peptides with phospholipid vesicles and their antibacterial activity. Peptides 31:1811–1820

    Article  CAS  PubMed  Google Scholar 

  27. Matsuzaki K, Sugishita K, Ishibe N, Ueha M, Nakata S, Miyajima K, Epand RM (1998) Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry 37:11856–11863

    Article  CAS  PubMed  Google Scholar 

  28. Sitaram N, Nagaraj R (1999) Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta 1462:29–54

    Article  CAS  PubMed  Google Scholar 

  29. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, Krajewski S, Lombardo CR, Rao R, Ruoslahti E, Bredesen DE, Pasqualini R (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5:1032–1038

    Article  CAS  PubMed  Google Scholar 

  30. Mai JC, Mi Z, Kim SH, Ng B, Robbins PD (2001) A proapoptotic peptide for the treatment of solid tumors. Cancer Res 61:7709–7712

    CAS  PubMed  Google Scholar 

  31. Chou HT, Kuo TY, Chiang JC, Pei MJ, Yang WT, Yu HC, Lin SB, Chen WJ (2008) Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Int J Antimicrob Agents 32:130–138

    Article  CAS  PubMed  Google Scholar 

  32. Chen YL, Li JH, Yu CY, Lin CJ, Chiu PH, Chen PW, Lin CC, Chen WJ (2012) Novel cationic antimicrobial peptide GW-H1 induced caspase-dependent apoptosis of hepatocellular carcinoma cell lines. Peptides 36:257–265

    Article  CAS  PubMed  Google Scholar 

  33. Pan WR, Chen PW, Chen YL, Hsu HC, Lin CC, Chen WJ (2013) Bovine lactoferricin B induces apoptosis of human gastric cancer cell line AGS by inhibition of autophagy at a late stage. J Dairy Sci 96:7511–7520

    Article  CAS  PubMed  Google Scholar 

  34. Dennison SR, Whittaker M, Harris F, Phoenix DA (2006) Anticancer alpha-helical peptides and structure/function relationships underpinning their interactions with tumour cell membranes. Curr Protein Pept Sci 7:487–499

    Article  CAS  PubMed  Google Scholar 

  35. Riedl S, Zweytick D, Lohner K (2011) Membrane-active host defense peptides-challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids 164:766–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. J Pathol 221:117–124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Denton D, Nicolson S, Kumar S (2012) Cell death by autophagy: facts and apparent artefacts. Cell Death Differ 19:87–95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833:3448–3459

    Article  CAS  PubMed  Google Scholar 

  39. Fimia GM, Piacentini M (2010) Regulation of autophagy in mammals and its interplay with apoptosis. Cell Mol Life Sci 67:1581–1588

    Article  CAS  PubMed  Google Scholar 

  40. Li H, Wang P, Sun Q, Ding WX, Yin XM, Sobol RW, Stolz DB, Yu J, Zhang L (2011) Following cytochrome C release, autophagy is inhibited during chemotherapy-induced apoptosis by caspase 8-mediated cleavage of Beclin 1. Cancer Res 71:3625–3634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Giansanti V, Torriglia A, Scovassi AI (2011) Conversation between apoptosis and autophagy: “Is it your turn or mine?”. Apoptosis 16:321–333

    Article  PubMed  Google Scholar 

  43. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6:1221–1228

    Article  CAS  PubMed  Google Scholar 

  44. Shimizu S, Konishi A, Nishida Y, Mizuta T, Nishina H, Yamamoto A, Tsujimoto Y (2010) Involvement of JNK in the regulation of autophagic cell death. Oncogene 29:2070–2082

    Article  CAS  PubMed  Google Scholar 

  45. Zhou F, Yang Y, Xing D (2011) Bcl-2 and Bcl-Xl play important roles in the crosstalk between autophagy and apoptosis. FEBS J 278:403–413

    Article  CAS  PubMed  Google Scholar 

  46. Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304:1500–1502

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Grant sponsor: National Science Council of Taiwan. Grant numbers: NSC 100-2311-B-197-001 and NSC 101-2311-B-197-001.

Conflict of interest

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Jung Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, WR., Chen, YL.S., Hsu, HC. et al. Antimicrobial peptide GW-H1-induced apoptosis of human gastric cancer AGS cell line is enhanced by suppression of autophagy. Mol Cell Biochem 400, 77–86 (2015). https://doi.org/10.1007/s11010-014-2264-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2264-3

Keywords

Navigation