Skip to main content

Advertisement

Log in

OCT4 mutations in human erythroleukemic cells: implications for multiple drug resistance (MDR) phenotype

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The OCT4 transcription factor is a crucial stem cells marker and it has been related to the cancer stem cells concept. Moreover, it has also been associated to the multiple drug resistance (MDR) phenotype. Our first results pointed out a straight relation between OCT4 and ABC transporters in K562-derivative MDR (Lucena) cells. Sequencing of ABC promoters did not reveal any mutation that could explain the differential expression of OCT4 in Lucena cells. Furthermore, sequencing of the homeobox domain region from the OCT4 gene isolated from both cell lines evinced, for the first time, that this transcription factor is a target of mutations and might be related to the MDR phenotype. The encountered mutations implied in several amino acids substitutions in both cell lines. K562 had seven amino acids substituted (three of them exclusive), while Lucena had 13 substitutions (nine of them exclusive). In addition, an in silico search for phosphorylation motifs within the amino acid stretch compared showed that human normal OCT4 has seven potential phosphorylation motifs. However, K562 has lost one phosphorylation motif and Lucena two of them. These findings bring OCT4 as an important target for cancer treatment, especially those resistant to chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alison MR, Lim SM, Nicholson LJ (2011) Cancer stem cells: problems for therapy? J Pathol 223(2):147–161

    Article  CAS  PubMed  Google Scholar 

  2. Hu T, Liu S, Breiter DR, Wang F, Tang Y, Sun S (2008) Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis. Cancer Res 68(16):6533–6540

    Article  CAS  PubMed  Google Scholar 

  3. Klonisch T, Wiechec E, Hombach-Klonisch S, Ande SR, Wesselborg S, Schulze-Osthoff K et al (2008) Cancer stem cell markers in common cancers—therapeutic implications. Trends Mol Med 14(10):450–460

    Article  CAS  PubMed  Google Scholar 

  4. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  CAS  PubMed  Google Scholar 

  5. Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L et al (2009) Highly tumorigenic lung cancer CD133 + cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci USA 106(38):16281–16286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Nguyen LV, Vanner R, Dirks P, Eaves CJ (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12(2):133–143

    CAS  PubMed  Google Scholar 

  7. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284

    Article  CAS  PubMed  Google Scholar 

  8. Hammachi F, Morrison GM, Sharov AA, Livigni A, Narayan S, Papapetrou EP et al (2012) Transcriptional activation by Oct4 is sufficient for the maintenance and induction of pluripotency. Cell Rep 1(2):99–109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wei F, Schöler HR, Atchison ML (2007) Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J Biol Chem 282(29):21551–21560

    Article  CAS  PubMed  Google Scholar 

  10. Walker E, Ohishi M, Davey RE, Zhang W, Cassar PA, Tanaka TS et al (2007) Prediction and testing of novel transcriptional networks regulating embryonic stem cell self-renewal and commitment. Cell Stem Cell 1(1):71–86

    Article  CAS  PubMed  Google Scholar 

  11. Liu Y, Labosky PA (2008) Regulation of embryonic stem cell self-renewal and pluripotency by Foxd3. Stem Cells 26(10):2475–2484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Saxe JP, Tomilin A, Schöler HR, Plath K, Huang J (2009) Post-translational regulation of Oct4 transcriptional activity. PLoS ONE 4(2):e4467

    Article  PubMed Central  PubMed  Google Scholar 

  13. Wang X, Dai J (2010) Concise review: isoforms of OCT4 contribute to the confusing diversity in stem cell biology. Stem Cells 28(5):885–893

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Zhang W, Wang X, Xiao Z, Liu W, Chen B, Dai J (2010) Mapping of the minimal internal ribosome entry site element in the human embryonic stem cell gene OCT4B mRNA. Biochem Biophys Res Commun 394(3):750–754

    Article  CAS  PubMed  Google Scholar 

  15. Lim HY, Do HJ, Lee WY, Kim DK, Seo HG, Chung HJ et al (2009) Implication of human OCT4 transactivation domains for self-regulatory transcription. Biochem Biophys Res Commun 385(2):148–153

    Article  CAS  PubMed  Google Scholar 

  16. Fang XF, Zhang WY, Zhao N, Yu W, Ding D, Hong X et al (2011) Genome-wide analysis of OCT4 binding sites in glioblastoma cancer cells. J Zhejiang Univ Sci B 12(10):812–819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Looijenga LHJ, Stoop H, Leeuw HPJCD, Tumors C, Roozendaal KEPV, Zoelen EJJV et al (2003) POU5F1 (OCT3/4) Identifies cells with pluripotent potential in human germ cell tumors. Cancer Res 63:2244–2250

    CAS  PubMed  Google Scholar 

  18. Linn DE, Yang X, Sun F, Xie Y, Xen H, Jiang R et al (2010) A role for OCT4 in tumor initiation of drug-resistance prostate cancer cells. Genes Cancer 1(9):908–916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Wang XQ, Ongkeko WM, Chen L, Yang ZF, Lu P, Chen KK (2010) Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology 52:528–539

    Article  CAS  PubMed  Google Scholar 

  20. Koo BS, Lee SH, Kim JM, Huang S, Kim SH, Rho YS et al (2014) Oct4 is a critical regulator of stemness in head and neck squamous carcinoma cells. Oncogene.doi: 1038/onc.2014.174

  21. Marques DS, Sandrini JZ, Boyle RT, Marins LF, Trindade GS (2010) Relationships between multidrug resistance (MDR) and stem cell markers in human chronic myeloid leukemia cell lines. Leuk Res 34:757–762

    Article  CAS  PubMed  Google Scholar 

  22. Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45(3):321–334

    CAS  PubMed  Google Scholar 

  23. Rumjanek VM, Lucena M, Campos MM, Marques-silva VM, Maia RC (1994) Multidrug resistance in leukemias: the problem and some approaches to its circumvention. J Braz Assoc Adv Sci 46(1/2):63–69

    CAS  Google Scholar 

  24. Rumjanek VM, Trindade GS, Wagner-Souza K, Meletti-de-Oliveira MC, Marques-Santos LF, Maia RC et al (2001) Multidrug resistance in tumour cells: characterisation of the multidrug resistant cell line K562-Lucena 1. An Acad Bras Ciênc 73(1):57–69

    Article  CAS  PubMed  Google Scholar 

  25. Maia RC, Silva EAC, Harab RC, Lucena M, Pires V, Rumjanek VM (2001) Sensitivity of vincristine-sensitive K562 and vincristine-resistant K562-Lucena 1 cells to anthracyclines and reversal of multidrug resistance. Braz J Med Biol Res 29(4):467–472

    Google Scholar 

  26. Maia RC, Wagner K, Cabral RH, Rumjanek VM (1996) Heparin reverses Rhodamine 123 extrusion by multidrug resistant cells. Cancer Lett 106:101–108

    Article  CAS  PubMed  Google Scholar 

  27. Orind M, Wagner-Souza K, Maia RC, Rumjanek VM (1997) Modulation of P-glycoprotein on tumour cells. In: Sotelo JR & Benech JC (Ed.): Calcium and cellular metabolism: transport and regulation. Plenum Press: Newyork NY, 72(1), pp 117–124

  28. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucl Acid Res 30:1–10

    Article  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.) 25(4): 402–408

  30. Quandt K, Frech K, Karas H, Wingender E, Werner T (1995) MatInd and matInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucl Acid Res 23:4878–4884

    Article  CAS  Google Scholar 

  31. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526

    CAS  PubMed  Google Scholar 

  32. Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK, Surendranath V et al (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 13:2363–2371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Guo Y, Costa R, Ramsey H, Starnes T, Vance G, Robertson K et al (2002) The embryonic stem cell transcription factors Oct-4 and FoxD3 interact to regulate endodermal-specific promoter expression. Proc Natl Acad Sci USA 99:3663–3667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Kim J, Chu J, Shen X, Wang J, Orkin SH (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132:1049–1061

    Article  CAS  PubMed  Google Scholar 

  35. Scotto KW (2003) Transcriptional regulation of ABC drug transporters. Oncogene 22:7496–7511

    Article  CAS  PubMed  Google Scholar 

  36. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  37. Brumbaugh J, Hou Z, Russell JD, Howden SE, Yu P, Ledvina AR et al (2012) Phosphorylation regulates human OCT4. Proc Natl Acad Sci 109(19):7162–7168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Brehm A, Ohbo K, Schöler H (1997) The carboxy-terminal transactivation domain of Oct-4 acquires cell specificity through the POU domain. Mol Cell Biol 17:154–162

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Instituto de Bioquímica Médica Leopoldo de Meis from the Universidade Federal do Rio de Janeiro (UFRJ) for providing the cell lines used in this study. Also, we thank CAPES (coordenação de aperfeiçoamento de pessoal de nível superior) for scholarship to B. Oliveira. L. F. Marins is a research fellow from CNPq (Proc. No. 304675/2011-3).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Fernando Marins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, B.R., Figueiredo, M.A., Trindade, G.S. et al. OCT4 mutations in human erythroleukemic cells: implications for multiple drug resistance (MDR) phenotype. Mol Cell Biochem 400, 41–50 (2015). https://doi.org/10.1007/s11010-014-2260-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2260-7

Keywords

Navigation