Skip to main content
Log in

MicroRNA-204, a direct negative regulator of ezrin gene expression, inhibits glioma cell migration and invasion

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ezrin is overexpressed in a variety of neoplastic cells and involved in the later stages of tumor progression and metastasis. Ezrin expression can be regulated at both the transcriptional and post-transcriptional levels. We used a combination of bioinformatics and experimental techniques to demonstrate that the miR-204 is a direct negative regulator of ezrin. Overexpression of miR-204 mimics decreased the activity of a luciferase reporter containing the ezrin 3′ UTR and led to repression of ezrin protein. In contrast, ectopic expression of miR-204 inhibitor elevated ezrin expression. We also show that miR-204 is down-regulated in a panel of glioma tissues and in high invasive glioma cell lines we examined. Moreover, miR-204 mimics significantly reduced glioma cell migration and invasion, while miR-204 inhibitor generated the opposite results. Finally, overexpression of miR-204 and knockdown of ezrin reduced glioma cell invasion, and these effects could be rescued by re-expression of ezrin. These findings reveal that miR-204 could be partly due to its inhibitory effects on glioma cell migration and invasion through regulating ezrin expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW et al (2007) The 2007 WHO classification of tumors of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  3. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  4. Wong JW (2010) MicroRNA-induced silencing of glioma progression. J Neurosci 30:3868–3869

    Article  PubMed  CAS  Google Scholar 

  5. Lawler S, Chiocca EA (2009) Emerging functions of microRNAs in glioblastoma. J Neurooncol 92:297–306

    Article  PubMed  CAS  Google Scholar 

  6. Novakova J, Slaby O, Vyzula R, Michalek J (2009) MicroRNA involvement in glioblastoma pathogenesis. Biochem Biophys Res Commun 386:1–5

    Article  PubMed  CAS  Google Scholar 

  7. Rao SA, Santosh V, Somasundaram K (2010) Genomewide expression profiling identifies deregulated miRNAs in malignant astrocytoma. Mod Pathol 23:1404–1417

    Article  PubMed  CAS  Google Scholar 

  8. Srinivasan S, Patric IR, Somasundaram K (2011) A ten microRNA expression signature predicts survival in glioblastoma. PLoS ONE 6:e17438

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Kim TM, Huang W, Park R, Park PJ, Johnson MD (2011) A developmental taxonomy of glioblastoma defined and maintained by microRNAs. Cancer Res 71:3387–3399

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Saotome I, Curto M, McClatchey AI (2004) Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine. Dev Cell 6:855–864

    Article  PubMed  CAS  Google Scholar 

  11. Faure S, Salazar-Fontana LI, Semichon M, Tybulewicz VL, Bismuth G, Trautmann A, Germain RN et al (2004) ERM proteins regulate cytoskeleton relaxation promoting T cell-APC conjugation. Nat Immunol 5:272–279

    Article  PubMed  CAS  Google Scholar 

  12. Georgescu MM, Morales FC, Molina JR, Hayashi Y (2008) Roles of NHERF1/EBP50 in cancer. Curr Mol Med 8:459–468

    Article  PubMed  CAS  Google Scholar 

  13. Geiger KD, Stoldt P, Schlote W, Derouiche A (2000) Ezrin immunoreactivity is associated with increasing malignancy of astrocytic tumors but is absent in oligodendrogliomas. Am J Pathol 157:1785–1793

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Tynninen O, Carpén O, Jääskeläinen J, Paavonen T, Paetau A (2004) Ezrin expression in tissue microarray of primary and recurrent gliomas. Neuropathol Appl Neurobiol 30:472–477

    Article  PubMed  CAS  Google Scholar 

  15. Mao J, Yuan XR, Xu SS, Jiang XC, Zhao XT (2013) Expression and functional significance of ezrin in human brain astrocytoma. Cell Biochem Biophys 67:1507–1511

    Article  PubMed  CAS  Google Scholar 

  16. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36:D149–D153

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  PubMed  CAS  Google Scholar 

  20. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  PubMed  CAS  Google Scholar 

  22. de Ridder LI, Laerum OD, Mørk SJ, Bigner DD (1987) Invasiveness of human glioma cell lines in vitro: relation to tumorigenicity in athymic mice. Acta Neuropathol 72:207–213

    Article  PubMed  Google Scholar 

  23. Lam EK, Wang X, Shin VY, Zhang S, Morrison H, Sun J, Ng EK et al (2011) A microRNA contribution to aberrant Ras activation in gastric cancer. Am J Transl Res 3(2):209–218

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Zhu J, Feng Y, Ke Z, Yang Z, Zhou J, Huang X, Wang L (2012) Down-regulation of miR-183 promotes migration and invasion of osteosarcoma by targeting ezrin. Am J Pathol 180:2440–2451

    Article  PubMed  CAS  Google Scholar 

  25. Bretscher A, Edwards K, Fehon RG (2002) ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3:586–599

    Article  PubMed  CAS  Google Scholar 

  26. Yao X, Forte JG (2003) Cell biology of acid secretion in gastric parietal cells. Annu Rev Physiol 65:103–131

    Article  PubMed  CAS  Google Scholar 

  27. Roumier A, Olivo-Marin JC, Arpin M, Michel F, Martin M, Mangeat P, Acuto O et al (2001) The membrane-microfilament linker ezrin is involved in the formation of the immunological synapse and in T cell activation. Immunity 15:715–728

    Article  PubMed  CAS  Google Scholar 

  28. Furutani Y, Matsuno H, Kawasaki M, Sasaki T, Mori K, Yoshihara Y (2007) Interaction between telencephalin and ERM family proteins mediates dendritic filopodia formation. J Neurosci 27:8866–8876

    Article  PubMed  CAS  Google Scholar 

  29. Morales FC, Molina JR, Hayashi Y, Georgescu MM (2010) Overexpression of ezrin inactivates NF2 tumor suppressor in glioblastoma. Neuro Oncol 12:528–539

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Chen Y, Wang D, Guo Z, Zhao J, Wu B, Deng H, Zhou T et al (2011) Rho kinase phosphorylation promotes ezrin-mediated metastasis in hepatocellular carcinoma. Cancer Res 71:1721–1729

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Gavert N, Ben-Shmuel A, Lemmon V, Brabletz T, Ben-Ze’ev A (2010) Nuclear factor-κB signaling and ezrin are essential for L1-mediated metastasis of colon cancer cells. J Cell Sci 123:2135–2143

    Article  PubMed  CAS  Google Scholar 

  32. Hoelzinger DB, Demuth T, Berens ME (2007) Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst 99:1583–1593

    Article  PubMed  CAS  Google Scholar 

  33. Demuth T, Berens ME (2004) Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 70:217–228

    Article  PubMed  Google Scholar 

  34. Mareel M, Leroy A (2003) Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev 83:337–376

    PubMed  CAS  Google Scholar 

  35. Fillmore HL, VanMeter TE, Broaddus WC (2001) Membranetype matrix metalloproteinases (MT-MMPs): expression and function during glioma invasion. J Neurooncol 53:187–202

    Article  PubMed  CAS  Google Scholar 

  36. Xia H, Qi Y, Ng SS, Chen X, Li D, Chen S, Ge R et al (2009) microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Res 1269:158–165

    Article  PubMed  CAS  Google Scholar 

  37. Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, Krichevsky AM (2008) MicroRNA-21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 28:5369–5380

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E (2009) MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 125:1407–1413

    Article  PubMed  CAS  Google Scholar 

  39. Gabriely G, Yi M, Narayan RS, Niers JM, Wurdinger T, Imitola J, Ligon KL et al (2011) Human glioma growth is controlled by microRNA-10b. Cancer Res 71:3563–3572

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP, Bian XW et al (2012) The putative tumor suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut 61:278–289

    Article  PubMed  CAS  Google Scholar 

  41. Xia H, Cheung WK, Ng SS, Jiang X, Jiang S, Sze J, Leung GK et al (2012) Loss of brain-enriched miR-124 microRNA enhances stem-like traits and invasiveness of glioma cells. J Biol Chem 287:9962–9971

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Ying Zhe, Li Yun, Jueheng Wu, Zhu Xun, Yang Yi, Tian Han, Li Wei et al (2013) Loss of miR-204 expression enhances glioma migration and stem cell-like phenotype. Cancer Res 73:990–999

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (81300172 to K.L., 81301497 to Y.Y.Z.); Natural Science Foundation of Anhui Province (1308085QH137 to K.L., 1408085MH205 to J.M., 1408085QH148 to Y.Y.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, J., Zhang, M., Zhong, M. et al. MicroRNA-204, a direct negative regulator of ezrin gene expression, inhibits glioma cell migration and invasion. Mol Cell Biochem 396, 117–128 (2014). https://doi.org/10.1007/s11010-014-2148-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2148-6

Keywords

Navigation