Skip to main content
Log in

Lipid metabolites and their differential pro-arrhythmic profiles: of importance in the development of a new anti-arrhythmic pharmacology

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Arrhythmias have been treated for a long time with drugs that mainly target the ionic pumps and channels. These anti-arrhythmic regimens per se introduce new arrhythmias, which can be detrimental to patients. Advances in development of novel pharmacology without introduction of iatrogenic arrhythmias are thus favorable for an effective treatment of arrhythmias. Electrophysiological stability of the heart has been shown to be closely associated with cardiac metabolism. The present effective anti-arrhythmic drugs such as beta-blockers and amiodarone have profound beneficial effects in regulating myocardial metabolism. Aiming at decreasing production of toxic metabolites or preventing accumulation of arrhythmogenic lipids perhaps is a good strategy to effectively control arrhythmias. Therefore, a better understanding of the pro-arrhythmic profiles of cardiac metabolites helps to explore a new generation of metabolically oriented anti-arrhythmic medications. In this review, we present several lipid metabolites and summarize their arrhythmogenic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Moss AJ (2010) Preventing heart failure and improving survival. N Engl J Med 363:2456–2457

    Article  CAS  PubMed  Google Scholar 

  2. Hohnloser S, Weiss M, Zeiher A, Wollschlager H, Hust MH, Just H (1984) Sudden cardiac death recorded during ambulatory electrocardiographic monitoring. Clin Cardiol 7:517–523

    Article  CAS  PubMed  Google Scholar 

  3. Wu J, Corr PB (1995) Palmitoylcarnitine increases [Na+]i and initiates transient inward current in adult ventricular myocytes. Am J Physiol 268:H2405–H2417

    CAS  PubMed  Google Scholar 

  4. Ziolo MT, Sondgeroth KL, Harshbarger CH, Smith JM, Wahler GM (2001) Effects of arrhythmogenic lipid metabolites on the L-type calcium current of diabetic versus non-diabetic rat hearts. Mol Cell Biochem 220:169–175

    Article  CAS  PubMed  Google Scholar 

  5. Hagenfeldt L, Wester PO (1973) Plasma levels of individual free fatty acids in patients with acute myocardial infarction. Acta Med Scand 194:357–362

    Article  CAS  PubMed  Google Scholar 

  6. Oie E, Ueland T, Dahl CP, Bohov P, Berge C, Yndestad A, Gullestad L, Aukrust P, Berge RK (2011) Fatty acid composition in chronic heart failure: low circulating levels of eicosatetraenoic acid and high levels of vaccenic acid are associated with disease severity and mortality. J Intern Med 270:263–272

    Article  CAS  PubMed  Google Scholar 

  7. Abel ED, Doenst T (2011) Mitochondrial adaptations to physiological versus pathological cardiac hypertrophy. Cardiovasc Res 90:234–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Willerbrands AF, ter Welle HF, Tasseron SJ (1973) The effect of a high molar FFA-albumin ratio in the perfusion medium on rhythm and contractility of the isolated rat heart. J Mol Cell Cardiol 5:259–273

    Article  CAS  PubMed  Google Scholar 

  9. Chiu HC, Kovacs A, Blanton RM, Han X, Courtois M, Weinheimer CJ, Yamada KA, Brunet S, Xu H, Nerbonne JM, Welch MJ, Fettig NM, Sharp TL, Sambandam N, Olson KM, Ory DS, Schaffer JE (2005) Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circ Res 96:225–233

    Article  CAS  PubMed  Google Scholar 

  10. Muller S, How OJ, Jakobsen O, Hermansen SE, Rosner A, Stenberg TA, Myrmel T (2010) Oxygen-wasting effect of inotropy: is there a need for a new evaluation? An experimental large-animal study using dobutamine and levosimendan. Circ Heart Fail 3:277–285

    Article  PubMed  Google Scholar 

  11. Myrmel T, Korvald C (2000) New aspects of myocardial oxygen consumption. Invited review. Scand Cardiovasc J 34:233–241

    Article  CAS  PubMed  Google Scholar 

  12. Riedel MJ, Baczko I, Searle GJ, Webster N, Fercho M, Jones L, Lang J, Lytton J, Dyck JR, Light PE (2006) Metabolic regulation of sodium-calcium exchange by intracellular acyl CoAs. EMBO J 25:4605–4614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Shen JB, Pappano AJ (1997) Mechanisms for depolarization by l-palmitoylcarnitine in single guinea pig ventricular myocytes. J Cardiovasc Electrophysiol 8:172–183

    Article  CAS  PubMed  Google Scholar 

  14. Billman GE (2008) The cardiac sarcolemmal ATP-sensitive potassium channel as a novel target for anti-arrhythmic therapy. Pharmacol Ther 120:54–70

    Article  CAS  PubMed  Google Scholar 

  15. Rennison JH, Van Wagoner DR (2009) Impact of dietary fatty acids on cardiac arrhythmogenesis. Circ Arrhythm Electrophysiol 2:460–469

    Article  PubMed  Google Scholar 

  16. Makiguchi M, Kawaguchi H, Tamura M, Yasuda H (1991) Effect of palmitic acid and fatty acid binding protein on ventricular fibrillation threshold in the perfused rat heart. Cardiovasc Drugs Ther 5:753–761

    Article  CAS  PubMed  Google Scholar 

  17. Charnock JS (1994) Lipids and cardiac arrhythmia. Prog Lipid Res 33:355–385

    Article  CAS  PubMed  Google Scholar 

  18. Yeop HC, Kargi AY, Omer M, Chan CK, Wabitsch M, O’Brien KD, Wight TN, Chait A (2010) Differential effect of saturated and unsaturated free fatty acids on the generation of monocyte adhesion and chemotactic factors by adipocytes: dissociation of adipocyte hypertrophy from inflammation. Diabetes 59:386–396

    Article  Google Scholar 

  19. Koufaki M, Calogeropoulou T, Detsi A, Roditis A, Kourounakis AP, Papazafiri P, Tsiakitzis K, Gaitanaki C, Beis I, Kourounakis PN (2001) Novel potent inhibitors of lipid peroxidation with protective effects against reperfusion arrhythmias. J Med Chem 44:4300–4303

    Article  CAS  PubMed  Google Scholar 

  20. Stark G (2005) Functional consequences of oxidative membrane damage. J Membr Biol 205:1–16

    Article  CAS  PubMed  Google Scholar 

  21. Fukuda K, Davies SS, Nakajima T, Ong BH, Kupershmidt S, Fessel J, Amarnath V, Anderson ME, Boyden PA, Viswanathan PC, Roberts LJ 2nd, Balser JR (2005) Oxidative mediated lipid peroxidation recapitulates proarrhythmic effects on cardiac sodium channels. Circ Res 97:1262–1269

    Article  CAS  PubMed  Google Scholar 

  22. Kannan MM, Quine SD (2013) Ellagic acid inhibits cardiac arrhythmias, hypertrophy and hyperlipidaemia during myocardial infarction in rats. Metabolism 62:52–61

    Article  CAS  PubMed  Google Scholar 

  23. Curtis MJ, Pugsley MK, Walker MJ (1993) Endogenous chemical mediators of ventricular arrhythmias in ischaemic heart disease. Cardiovasc Res 27:703–719

    Article  CAS  PubMed  Google Scholar 

  24. Knabb MT, Saffitz JE, Corr PB, Sobel BE (1986) The dependence of electrophysiological derangements on accumulation of endogenous long-chain acyl carnitine in hypoxic neonatal rat myocytes. Circ Res 58:230–240

    Article  CAS  PubMed  Google Scholar 

  25. McHowat J, Yamada KA, Saffitz JE, Corr PB (1993) Subcellular distribution of endogenous long chain acylcarnitines during hypoxia in adult canine myocytes. Cardiovasc Res 27:1237–1243

    Article  CAS  PubMed  Google Scholar 

  26. Ueland T, Svardal A, Oie E, Askevold ET, Nymoen SH, Bjorndal B, Dahl CP, Gullestad L, Berge RK, Aukrust P (2012) Disturbed carnitine regulation in chronic heart failure: Increased plasma levels of palmitoyl-carnitine are associated with poor prognosis. Int J Cardiol 167(5):1892–1899

  27. Patel MK, Economides AP, Byrne NG (1999) Effects of palmitoyl carnitine on perfused heart and papillary muscle. J Cardiovasc Pharmacol Ther 4:85–96

    Article  CAS  PubMed  Google Scholar 

  28. DaTorre SD, Creer MH, Pogwizd SM, Corr PB (1991) Amphipathic lipid metabolites and their relation to arrhythmogenesis in the ischemic heart. J Mol Cell Cardiol 23(Suppl 1):11–22

    Article  CAS  PubMed  Google Scholar 

  29. Sato N, Takahashi K, Ohta H, Kurihara H, Fukui K, Murayama Y, Taniguchi S (1993) Effect of Ca2+ on the binding of Actinobacillus actinomycetemcomitans leukotoxin and the cytotoxicity to promyelocytic leukemia HL-60 cells. Biochem Mol Biol Int 29:899–905

    CAS  PubMed  Google Scholar 

  30. Netticadan T, Yu L, Dhalla NS, Panagia V (1999) Palmitoyl carnitine increases intracellular calcium in adult rat cardiomyocytes. J Mol Cell Cardiol 31:1357–1367

    Article  CAS  PubMed  Google Scholar 

  31. Liu QY, Rosenberg RL (1996) Activation and inhibition of reconstituted cardiac L-type calcium channels by palmitoyl-L-carnitine. Biochem Biophys Res Commun 228:252–258

    Article  CAS  PubMed  Google Scholar 

  32. Taki H, Muraki K, Imaizumi Y, Watanabe M (1999) Mechanisms of the palmitoylcarnitine-induced response in vascular endothelial cells. Pflugers Arch 438:463–469

    Article  CAS  PubMed  Google Scholar 

  33. Gizurarson S, Shao Y, Miljanovic A, Ramunddal T, Boren J, Bergfeldt L, Omerovic E (2012) Electrophysiological effects of lysophosphatidylcholine on HL-1 cardiomyocytes assessed with a microelectrode array system. Cell Physiol Biochem 30:477–488

    Article  CAS  PubMed  Google Scholar 

  34. Watanabe M, Okada T (2003) Lysophosphatidylcholine-induced myocardial damage is inhibited by pretreatment with poloxamer 188 in isolated rat heart. Mol Cell Biochem 248:209–215

    Article  CAS  PubMed  Google Scholar 

  35. Corr PB, Yamada KA, Creer MH, Sharma AD, Sobel BE (1987) Lysophosphoglycerides and ventricular fibrillation early after onset of ischemia. J Mol Cell Cardiol 19(Suppl 5):45–53

    Article  CAS  PubMed  Google Scholar 

  36. Sobel BE, Corr PB, Robison AK, Goldstein RA, Witkowski FX, Klein MS (1978) Accumulation of lysophosphoglycerides with arrhythmogenic properties in ischemic myocardium. J Clin Invest 62:546–553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Sato T, Arita M, Kiyosue T (1993) Differential mechanism of block of palmitoyl lysophosphatidylcholine and of palmitoylcarnitine on inward rectifier K+ channels of guinea-pig ventricular myocytes. Cardiovasc Drugs Ther 7(Suppl 3):575–584

    Article  PubMed  Google Scholar 

  38. Zheng M, Wang Y, Kang L, Shimaoka T, Marni F, Ono K (2010) Intracellular Ca(2+)- and PKC-dependent upregulation of T-type Ca(2+) channels in LPC-stimulated cardiomyocytes. J Mol Cell Cardiol 48:131–139

    Article  CAS  PubMed  Google Scholar 

  39. Daleau P (2002) Ethanol protects against lysophosphatidylcholine-induced uncoupling of cardiac cell pairs. Pflugers Arch 445:55–59

    Article  CAS  PubMed  Google Scholar 

  40. Undrovinas AI, Fleidervish IA, Makielski JC (1992) Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. Circ Res 71:1231–1241

    Article  CAS  PubMed  Google Scholar 

  41. Gautier M, Zhang H, Fearon IM (2008) Peroxynitrite formation mediates LPC-induced augmentation of cardiac late sodium currents. J Mol Cell Cardiol 44:241–251

    Article  CAS  PubMed  Google Scholar 

  42. Sedlis SP, Corr PB, Sobel BE, Ahumada GG (1983) Lysophosphatidyl choline potentiates Ca2+ accumulation in rat cardiac myocytes. Am J Physiol 244:H32–H38

    CAS  PubMed  Google Scholar 

  43. Ding WG, Toyoda F, Ueyama H, Matsuura H (2011) Lysophosphatidylcholine enhances I(Ks) currents in cardiac myocytes through activation of G protein, PKC and Rho signaling pathways. J Mol Cell Cardiol 50:58–65

    Article  CAS  PubMed  Google Scholar 

  44. Antzelevitch C (2001) Basic mechanisms of reentrant arrhythmias. Curr Opin Cardiol 16:1–7

    Article  CAS  PubMed  Google Scholar 

  45. Park TS, Hu Y, Noh HL, Drosatos K, Okajima K, Buchanan J, Tuinei J, Homma S, Jiang XC, Abel ED, Goldberg IJ (2008) Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J Lipid Res 49:2101–2112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Haus JM, Kashyap SR, Kasumov T, Zhang R, Kelly KR, Defronzo RA, Kirwan JP (2009) Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 58:337–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Argaud L, Prigent AF, Chalabreysse L, Loufouat J, Lagarde M, Ovize M (2004) Ceramide in the antiapoptotic effect of ischemic preconditioning. Am J Physiol Heart Circ Physiol 286:H246–H251

    Article  CAS  PubMed  Google Scholar 

  48. Bai Y, Wang J, Shan H, Lu Y, Zhang Y, Luo X, Yang B, Wang Z (2007) Sphingolipid metabolite ceramide causes metabolic perturbation contributing to HERG K+ channel dysfunction. Cell Physiol Biochem 20:429–440

    Article  CAS  PubMed  Google Scholar 

  49. Ganapathi SB, Fox TE, Kester M, Elmslie KS (2010) Ceramide modulates HERG potassium channel gating by translocation into lipid rafts. Am J Physiol Cell Physiol 299:C74–C86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Chapman H, Ramstrom C, Korhonen L, Laine M, Wann KT, Lindholm D, Pasternack M, Tornquist K (2005) Downregulation of the HERG (KCNH2) K(+) channel by ceramide: evidence for ubiquitin-mediated lysosomal degradation. J Cell Sci 118:5325–5334

    Article  CAS  PubMed  Google Scholar 

  51. Liu SJ, Kennedy RH (2003) Positive inotropic effect of ceramide in adult ventricular myocytes: mechanisms dissociated from its reduction in Ca2+ influx. Am J Physiol Heart Circ Physiol 285:H735–H744

    CAS  PubMed  Google Scholar 

  52. Schreur KD, Liu S (1997) Involvement of ceramide in inhibitory effect of IL-1 beta on L-type Ca2 + current in adult rat ventricular myocytes. Am J Physiol 272:H2591–H2598

    CAS  PubMed  Google Scholar 

  53. Chin BS, Langford NJ, Nuttall SL, Gibbs CR, Blann AD, Lip GY (2003) Anti-oxidative properties of beta-blockers and angiotensin-converting enzyme inhibitors in congestive heart failure. Eur J Heart Fail 5:171–174

    Article  CAS  PubMed  Google Scholar 

  54. Mak IT, Weglicki WB (1988) Protection by beta-blocking agents against free radical-mediated sarcolemmal lipid peroxidation. Circ Res 63:262–266

    Article  CAS  PubMed  Google Scholar 

  55. Rebrova TY, Afanasyev SA (2008) Free radical lipid peroxidation during amiodarone therapy for postinfarction cardiosclerosis. Bull Exp Biol Med 146:283–285

    Article  CAS  PubMed  Google Scholar 

  56. Chaitman BR (2006) Ranolazine for the treatment of chronic angina and potential use in other cardiovascular conditions. Circulation 113:2462–2472

    Article  PubMed  Google Scholar 

  57. Antzelevitch C, Burashnikov A, Sicouri S, Belardinelli L (2011) Electrophysiologic basis for the antiarrhythmic actions of ranolazine. Heart Rhythm 8:1281–1290

    Article  PubMed Central  PubMed  Google Scholar 

  58. Kang JX, Leaf A (1995) Protective effects of All-trans-retinoic acid against cardiac arrhythmias induced by isoproterenol, lysophosphatidylcholine or ischemia and reperfusion. J Cardiovasc Pharmacol 26:943–948

    Article  CAS  PubMed  Google Scholar 

  59. Carnes CA, Chung MK, Nakayama T, Nakayama H, Baliga RS, Piao S, Kanderian A, Pavia S, Hamlin RL, McCarthy PM, Bauer JA, Van Wagoner DR (2001) Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ Res 89:E32–E38

    Article  CAS  PubMed  Google Scholar 

  60. Goette A, Bukowska A, Lendeckel U (2007) Non-ion channel blockers as anti-arrhythmic drugs (reversal of structural remodeling). Curr Opin Pharmacol 7:219–224

    Article  CAS  PubMed  Google Scholar 

  61. Mancuso DJ, Abendschein DR, Jenkins CM, Han X, Saffitz JE, Schuessler RB, Gross RW (2003) Cardiac ischemia activates calcium-independent phospholipase A2beta, precipitating ventricular tachyarrhythmias in transgenic mice: rescue of the lethal electrophysiologic phenotype by mechanism-based inhibition. J Biol Chem 278:22231–22236

    Article  CAS  PubMed  Google Scholar 

  62. Corr PB, Creer MH, Yamada KA, Saffitz JE, Sobel BE (1989) Prophylaxis of early ventricular fibrillation by inhibition of acylcarnitine accumulation. J Clin Invest 83:927–936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Liu SJ, Kennedy RH, Creer MH, McHowat J (2003) Alterations in Ca2+ cycling by lysoplasmenylcholine in adult rabbit ventricular myocytes. Am J Physiol Cell Physiol 284:C826–C838

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by AFA insurance, the Swedish Heart and Lung Foundation, the Swedish Scientific Research Council and the University of Gothenburg, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangzhen Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Redfors, B., Benoist, D. et al. Lipid metabolites and their differential pro-arrhythmic profiles: of importance in the development of a new anti-arrhythmic pharmacology. Mol Cell Biochem 393, 191–197 (2014). https://doi.org/10.1007/s11010-014-2060-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2060-0

Keywords

Navigation