Skip to main content

Advertisement

Log in

An improved method and cost effective strategy for soluble expression and purification of human N-myristoyltransferase 1 in E. coli

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

N-myristoyltransferase (NMT) is an indispensible enzyme, which exists as two isoforms (NMT1 and NMT2) in humans and has proven roles in development of cancerous states. It is thus a target for novel anti-cancer drug design, but understanding of the biochemical and functional differences of these isozymes is not fully deciphered. A soluble expression under the T7 promoter for human NMT1 was achieved in E. coli BL21 (DE3) cells, devoid of any isopropyl β-d-1-thiogalactopyranoside-based induction. The identity of expressed protein was confirmed by matrix-assisted laser desorption ionization mass spectrometry peptide-fingerprint analysis and a two-step purification protocol yielded homogeneous enzyme. The intact mass of the purified protein was verified by electrospray ionization mass spectrometry and found to be in agreement with the theoretical mass (48.141 vs. 48.140 kDa). The fluorescence spectrophotometric analyses of the ligand binding and enzyme activity demonstrated that the recombinant form is functional. The yield of purified protein was ~8–10 mg/L culture (batch to batch variation) with a specific activity value of 18,500 ± 513 U/mg of protein under the experimental conditions used. The final verification of the myristoylation was demonstrated by mass spectrometry analysis of reaction product. The described approach could be readily adapted for production of human NMT1, with high yields of pure enzyme preparations, which should aid in downstream applications involving inhibitor design and structure–function studies of NMT’s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kumar S, Selvakumar P, Dimmock JR, Sharma RK (2012) NMT (N-myristoyltransferase). In: Choi S (ed) Encyclopedia of signaling molecules. Springer, New York, pp 1242–1245

    Google Scholar 

  2. Vilas GL, Corvi MM, Plummer GJ, Seime AM, Lambkin GR, Berthiaume LG (2006) Posttranslational myristoylation of caspase-activated p21-activated protein kinase 2 (PAK2) potentiates late apoptotic events. Proc Natl Acad Sci USA 103:6542–6547. doi:10.1073/pnas.0600824103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Wright MH, Heal WP, Mann DJ, Tate EW (2010) Protein myristoylation in health and disease. J Chem Biol 3:19–35. doi:10.1007/s12154-009-0032-8

    Article  PubMed Central  PubMed  Google Scholar 

  4. Resh MD (2012) Targeting protein lipidation in disease. Trends Mol Med 18:206–214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Das U, Kumar S, Dimmock JR, Sharma RK (2012) Inhibition of protein N-myristoylation: a therapeutic protocol in developing anticancer agents. Curr Cancer Drug Targets 12:667–692

    Article  CAS  PubMed  Google Scholar 

  6. Bhatnagar RS, Futterer K, Farazi TA, Korolev S, Murray CL, Jackson-Machelski E, Gokel GW, Gordon JI, Waksman G (1998) Structure of N-myristoyltransferase with bound myristoylCoA and peptide substrate analogs. Nat Struct Mol Biol 5:1091–1097

    Article  CAS  Google Scholar 

  7. Brand S, Cleghorn LAT, McElroy SP, Robinson DA, Smith VC, Hallyburton I, Harrison JR, Norcross NR, Spinks D, Bayliss T, Norval S, Stojanovski L, Torrie LS, Frearson JA, Brenk R, Fairlamb AH, Ferguson MAJ, Read KD, Wyatt PG, Gilbert IH (2012) Discovery of a novel class of orally active trypanocidal N-myristoyltransferase inhibitors. J Med Chem 55:140–152. doi:10.1021/jm201091t

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Yu Z, Brannigan JA, Moss DK, Brzozowski AM, Wilkinson AJ, Holder AA, Tate EW, Leatherbarrow RJ (2012) Design and synthesis of inhibitors of Plasmodium falciparum N-myristoyltransferase, a promising target for antimalarial drug discovery. J Med Chem 55:8879–8890. doi:10.1021/jm301160h

    Article  CAS  PubMed  Google Scholar 

  9. Bell AS, Mills JE, Williams GP, Brannigan JA, Wilkinson AJ, Parkinson T, Leatherbarrow RJ, Tate EW, Holder AA, Smith DF (2012) Selective inhibitors of protozoan protein N-myristoyltransferases as starting points for tropical disease medicinal chemistry programs. PLoS Negl Trop Dis 6:e1625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Frearson JA, Brand S, McElroy SP, Cleghorn LAT, Smid O, Stojanovski L, Price HP, Guther MLS, Torrie LS, Robinson DA, Hallyburton I, Mpamhanga CP, Brannigan JA, Wilkinson AJ, Hodgkinson M, Hui R, Qiu W, Raimi OG, van Aalten DMF, Brenk R, Gilbert IH, Read KD, Fairlamb AH, Ferguson MAJ, Smith DF, Wyatt PG (2010) N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature 464:728–732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Magnuson BA, Raju RVS, Moyana TN, Sharma RK (1995) Increased N-myristoyltransferase activity observed in rat and human colonic tumors. J Natl Cancer Inst 87:1630–1635. doi:10.1093/jnci/87.21.1630

    Article  CAS  PubMed  Google Scholar 

  12. Raju RVS, Moyana TN, Sharma RK (1997) N-myristoyltransferase overexpression in human colorectal adenocarcinomas. Exp Cell Res 235:145–154. doi:10.1006/excr.1997.3679

    Article  CAS  PubMed  Google Scholar 

  13. Ducker CE, Upson JJ, French KJ, Smith CD (2005) Two N-myristoyltransferase isozymes play unique roles in protein myristoylation, proliferation, and apoptosis. Mol Cancer Res 3:463–476. doi:10.1158/1541-7786.mcr-05-0037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Selvakumar P, Lakshmikuttyamma A, Shrivastav A, Das SB, Dimmock JR, Sharma RK (2007) Potential role of N-myristoyltransferase in cancer. Prog Lipid Res 46:1–36. doi:10.1016/j.plipres.2006.05.002

    Article  CAS  PubMed  Google Scholar 

  15. Strecker T, Maisa A, Daffis S, Eichler R, Lenz O, Garten W (2006) The role of myristoylation in the membrane association of the Lassa virus matrix protein Z. Virol J 3:93

    Article  PubMed Central  PubMed  Google Scholar 

  16. Perez M, Greenwald DL, de La Torre JC (2004) Myristoylation of the RING finger Z protein is essential for arenavirus budding. J Virol 78:11443–11448. doi:10.1128/jvi.78.20.11443-11448.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Foo CH, Whitbeck JC, Ponce-de-León M, Saw WT, Cohen GH, Eisenberg RJ (2012) The myristate moiety and amino terminus of vaccinia virus L1 constitute a bipartite functional region needed for entry. J Virol 86:5437–5451. doi:10.1128/jvi.06703-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Giang DK, Cravatt BF (1998) A second mammalian N-myristoyltransferase. J Biol Chem 273:6595–6598. doi:10.1074/jbc.273.12.6595

    Article  CAS  PubMed  Google Scholar 

  19. Glover CJ, Hartman KD, Felsted RL (1997) Human N-myristoyltransferase amino-terminal domain involved in targeting the enzyme to the ribosomal subcellular fraction. J Biol Chem 272:28680–28689. doi:10.1074/jbc.272.45.28680

    Article  CAS  PubMed  Google Scholar 

  20. Duronio RJ, Reed SI, Gordon JI (1992) Mutations of human myristoyl-CoA:protein N-myristoyltransferase cause temperature-sensitive myristic acid auxotrophy in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89:4129–4133. doi:10.1073/pnas.89.9.4129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Seaton KE, Smith CD (2008) N-myristoyltransferase isozymes exhibit differential specificity for human immunodeficiency virus type 1 Gag and Nef. J Gen Virol 89:288–296. doi:10.1099/vir.0.83412-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Takamune N, Gota K, Misumi S, Tanaka K, Okinaka S, Shoji S (2008) HIV-1 production is specifically associated with human NMT1 long form in human NMT isozymes. Microbes Infect 10:143–150. doi:10.1016/j.micinf.2007.10.015

    Article  CAS  PubMed  Google Scholar 

  23. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421. doi:10.1016/S0958-1669(99)00003-8

    Article  CAS  PubMed  Google Scholar 

  24. Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307:249–264

    Article  CAS  PubMed  Google Scholar 

  25. Sørensen H, Mortensen K (2005) Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact 4:1

    Article  PubMed Central  PubMed  Google Scholar 

  26. Correa A, Oppezzo P (2011) Tuning different expression parameters to achieve soluble recombinant proteins in E. coli: advantages of high-throughput screening. Biotechnol J 6:715–730. doi:10.1002/biot.201100025

    Article  CAS  PubMed  Google Scholar 

  27. Peti W, Page R (2007) Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Expr Purif 51:1–10. doi:10.1016/j.pep.2006.06.024

    Article  CAS  PubMed  Google Scholar 

  28. Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423. doi:10.1002/pro.5560041120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Sheoran IS, Olson DJH, Ross ARS, Sawhney VK (2005) Proteome analysis of embryo and endosperm from germinating tomato seeds. Proteomics 5:3752–3764. doi:10.1002/pmic.200401209

    Article  CAS  PubMed  Google Scholar 

  30. Bhatnagar RS, Jackson-Machelski E, McWherter CA, Gordon JI (1994) Isothermal titration calorimetric studies of Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase. Determinants of binding energy and catalytic discrimination among acyl-CoA and peptide ligands. J Biol Chem 269:11045–11053

    CAS  PubMed  Google Scholar 

  31. Goncalves V, Brannigan JA, Thinon E, Olaleye TO, Serwa R, Lanzarone S, Wilkinson AJ, Tate EW, Leatherbarrow RJ (2012) A fluorescence-based assay for N-myristoyltransferase activity. Anal Biochem 421:342–344. doi:10.1016/j.ab.2011.10.013

    Article  CAS  PubMed  Google Scholar 

  32. Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130. doi:10.1016/0022-2836(86)90385-2

    Article  CAS  PubMed  Google Scholar 

  33. Studier FW (1991) Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol 219:37–44. doi:10.1016/0022-2836(91)90855-Z

    Article  CAS  PubMed  Google Scholar 

  34. Dubendorf JW, Studier FW (1991) Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J Mol Biol 219:45–59. doi:10.1016/0022-2836(91)90856-2

    Article  Google Scholar 

  35. Rudnick DA, McWherter CA, Adams SP, Ropson IJ, Duronio RJ, Gordon JI (1990) Structural and functional studies of Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase produced in Escherichia coli. Evidence for an acyl–enzyme intermediate. J Biol Chem 265:13370–13378

    CAS  PubMed  Google Scholar 

  36. Lichty JJ, Malecki JL, Agnew HD, Michelson-Horowitz DJ, Tan S (2005) Comparison of affinity tags for protein purification. Protein Expr Purif 41:98–105. doi:10.1016/j.pep.2005.01.019

    Article  CAS  PubMed  Google Scholar 

  37. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399–1408

    Article  CAS  PubMed  Google Scholar 

  38. Sørensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115:113–128. doi:10.1016/j.jbiotec.2004.08.004

    Article  PubMed  Google Scholar 

  39. Chou CP (2007) Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Appl Microbiol Biotechnol 76:521–532. doi:10.1007/s00253-007-1039-0

    Article  CAS  PubMed  Google Scholar 

  40. Han M-J, Park SJ, Park TJ, Lee SY (2004) Roles and applications of small heat shock proteins in the production of recombinant proteins in Escherichia coli. Biotechnol Bioeng 88:426–436. doi:10.1002/bit.20227

    Article  CAS  PubMed  Google Scholar 

  41. French KJ, Zhuang Y, Schrecengost RS, Copper JE, Xia Z, Smith CD (2004) Cyclohexyl-octahydro-pyrrolo[1,2-a]pyrazine-based inhibitors of human N-myristoyltransferase-1. J Pharmacol Exp Ther 309:340–347. doi:10.1124/jpet.103.061572

    Article  CAS  PubMed  Google Scholar 

  42. McIlhinney RAJ, Patel PB, McGlone K (1994) Characterization of a polyhistidine-tagged form of human myristoyl-CoA:protein N-myristoyltransferase produced in Escherichia coli. Eur J Biochem 222:137–146. doi:10.1111/j.1432-1033.1994.tb18851.x

    Article  CAS  PubMed  Google Scholar 

  43. Peseckis SM, Resh MD (1994) Fatty acyl transfer by human N-myristyl transferase is dependent upon conserved cysteine and histidine residues. J Biol Chem 269:30888–30892

    CAS  PubMed  Google Scholar 

  44. Rocque WJ, McWherter CA, Wood DC, Gordon JI (1993) A comparative analysis of the kinetic mechanism and peptide substrate specificity of human and Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase. J Biol Chem 268:9964–9971

    CAS  PubMed  Google Scholar 

  45. Bornhorst JA, Falke JJ (2000) Purification of proteins using polyhistidine affinity tags. Methods Enzymol 326:245–254

    Google Scholar 

  46. Song J, Markley JL (2007) Cautionary tail: the presence of an N-terminal tag on dynein light-chain Roadblock/LC7 affects its interaction with a functional partner. Protein Pept Lett 14:265–268

    Article  CAS  PubMed  Google Scholar 

  47. Amor-Mahjoub M, Suppini JP, Gomez-Vrielyunck N, Ladjimi M (2006) The effect of the hexahistidine-tag in the oligomerization of HSC70 constructs. J Chromatogr B 844:328–334

    Article  CAS  Google Scholar 

  48. Zhu ZC, Gupta KK, Slabbekoorn AR, Paulson BA, Folker ES, Goodson HV (2009) Interactions between EB1 and microtubules: dramatic effect of affinity tags and evidence for cooperative behavior. J Biol Chem 284:32651–32661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Qiu W, Hutchinson A, Wernimont A, Lin Y, Kania A, Ravichandran M, Kozieradzki I, Cossar D, Schapira M, Arrowsmith C, Bountra C, Weigelt J, Edwards A, Wyatt P, Ferguson M, Frearson J, Brand S, Robinson D, Bochkarev A, Hui R (2009) Human type-I N-myristoyltransferase with bound myristoyl-CoA and inhibitor 2-{4-Hydroxy-5-methoxy-2-[3-(4-methyl-piperazin-1-yl)-propyl]-phenyl}-3-pyridin-3-yl-thiazolidin-4-one. Structural Genomics Consortium, Toronto. http://www.thesgc.org/structures/details?pdbid=3IU2/. Accessed 12 Nov 2013

  50. Xie H, Yang C, Chen LE (2009) Current strategies for polypeptide fusion tags removal. Prog Biochem Biophys 36:1364–1369

    Article  CAS  Google Scholar 

  51. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. In: Goeddel DV (ed) Methods in enzymology. Academic Press, New York, pp 60–89

    Google Scholar 

  52. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  PubMed  Google Scholar 

  53. Sezonov G, Joseleau-Petit D, D’Ari R (2007) Escherichia coli physiology in Luria–Bertani broth. J Bacteriol 189:8746–8749. doi:10.1128/jb.01368-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Grossman TH, Kawasaki ES, Punreddy SR, Osburne MS (1998) Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene 209:95–103

    Article  CAS  PubMed  Google Scholar 

  55. Martinelli LKB, Ducati RG, Rosado LA, Breda A, Selbach BP, Santos DS, Basso LA (2011) Recombinant Escherichia coli GMP reductase: kinetic, catalytic and chemical mechanisms, and thermodynamics of enzyme–ligand binary complex formation. Mol BioSyst 7:1289–1305

    Article  CAS  PubMed  Google Scholar 

  56. Sánchez-Quitian ZA, Schneider CZ, Ducati RG, de Azevedo WF Jr, Bloch C Jr, Basso LA, Santos DS (2010) Structural and functional analyses of Mycobacterium tuberculosis Rv3315c-encoded metal-dependent homotetrameric cytidine deaminase. J Struct Biol 169:413–423. doi:10.1016/j.jsb.2009.12.019

    Article  PubMed  Google Scholar 

  57. Grabski A, Mehler M, Drott D (2005) The overnight express autoinduction system: high-density cell growth and protein expression while you sleep. Nat Methods 2:233–235

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Canadian Breast Cancer Foundation. The authors are thankful to Dr. Linda Chelico, University of Saskatchewan for the use of BioLogic DuoFlow chromatographic system. Dr. Sreejit Paramaeswaran is thanked for critically reading the manuscript.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra K. Sharma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2014_2029_MOESM1_ESM.tif

Supplementary material 1 Supplementary figure 1 as TIFF image. Fig. S1 Section of ESI mass spectrum of purified hNMT1s. The experimentally determined molecular weight of 48141 Da is in accordance with the theoretical value of 48140.81 Da

11010_2014_2029_MOESM2_ESM.tif

Supplementary material 2 Supplementary figure 2 as TIFF image. Fig. S2 Structural model of the human N-myristoyltransferase representing the spatial location of the catalytic domain Trp 40 in the vicinity of bound ligand myristoyl-CoA. The image was generated from the PDB file 3IU1 with VMD (ver 1.8.7) [A]. [A] Humphrey W, Dalke A, Schulten K: VMD - Visual Molecular Dynamics. J Mol Graph 1996, 14:33-38

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Sharma, R.K. An improved method and cost effective strategy for soluble expression and purification of human N-myristoyltransferase 1 in E. coli . Mol Cell Biochem 392, 175–186 (2014). https://doi.org/10.1007/s11010-014-2029-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2029-z

Keywords

Navigation