Skip to main content
Log in

Dynamic alterations of connexin43, matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2 during ventricular fibrillation in canine

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the dynamic alterations of cardiac connexin 43 (Cx43), matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) in the setting of different ventricular fibrillation (VF) duration. In this study, thirty-two dogs were randomly divided into sham control group, 8-min VF group, 12-min VF group, and 30-min VF group. Cx43 and phosphorylated Cx43 (p-Cx43) in tissues were detected by western blot and immunofluorescence analysis. MMP-2 and TIMP-2 were detected by western blot and immunohistochemistry analysis. The results showed that Cx43 levels in three VF groups were significantly decreased compared with sham control group. p-Cx43 levels in 12-min and 30-min VF groups were significantly reduced compared with sham control group. The ratio of p-Cx43/Cx43 was also decreased in VF groups. Compared with sham controls, no significant difference was observed between the sham control group and 8-min VF group in MMP-2 level, but MMP-2 level increased in 12-min and 30-min VF groups. The ratios of MMP-2/TIMP-2 were higher in VF groups, and were correlated with the duration of VF. A remarkable correlation was observed between the ratio of p-Cx43/Cx43 and MMP-2/TIMP-2 (r = −0.93, P < 0.01). In conclusion, the alteration of Cx43 and/or p-Cx43 levels and the imbalance of MMP-2 and TIMP-2 may contribute to the initiation and/or persistence of VF. Maneuvers managed to modulate Cx43 level or normalize the balance of MMP-2/TIMP-2 are promising to ameliorate prognosis of VF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhao L, Zhang W, Zhang W, Zheng Y (2000) The effects of high-dose epinephrine combined with isoprenaline on isolated rabbit heart and cardiomyocytes after cardioversion of ventricular fibrillation. Mol Cell Biochem 207:71–75

    Article  CAS  PubMed  Google Scholar 

  2. Tribulová N, Knezl V, Okruhlicová L, Slezak J (2008) Myocardial gap junctions: targets for novel approaches in the prevention of life-threatening cardiac arrhythmias. Physiol Res 57:S1–S13

    PubMed  Google Scholar 

  3. Chaldoupi SM, Loh P, Hauer RN, de Bakker JM, van Rijen HV (2009) The role of connexin40 in atrial fibrillation. Cardiovasc Res 84:15–23

    Article  CAS  PubMed  Google Scholar 

  4. Xu HF, Ding YJ, Shen YW, Xue AM, Xu HM, Luo CL, Li BX, Liu YL, Zhao ZQ (2012) MicroRNA-1 represses Cx43 expression in viral myocarditis. Mol Cell Biochem 362:141–148

    Article  CAS  PubMed  Google Scholar 

  5. Fialová M, Dlugošová, Okruhlicová L, Kristek F, Manoach M, Tribulova N (2008) Adaptation of the heart to hypertension is associated with maladaptive gap junction connexin-43 remodelling. Physiol Res 57:7–11

    PubMed  Google Scholar 

  6. Moffitt JA, Henry MK, Welliver KC, Jepson AJ, Garnett ER (2013) Hindlimb unloading results in increased predisposition to cardiac arrhythmias and alters left ventricular connexin 43 expression. Am J Physiol Regul Integr Comp Physiol 304:R362–R373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ahmed SH, Clark LL, Pennington WR, Webb CS, Bonnema DD, Leonardi AH, McClure CD, Spinale FG, Zile MR (2006) Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation 113:2089–2096

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Z, Zhang L, Jia L, Cui S, Shi Y, Chang A, Zeng X, Wang P (2013) AP-2α suppresses invasion in BeWo cells by repression of matrix metalloproteinase-2 and -9 upregulation of E-cadherin. Mol Cell Biochem 381:31–39

    Article  CAS  PubMed  Google Scholar 

  9. López B, González A, Díez J (2004) Role of matrix metalloproteinases in hypertension- associated cardiac fibrosis. Curr Opin Nephrol Hypertens 13:197–204

    Article  PubMed  Google Scholar 

  10. Wang J, Li Z, Zhang Y, Liu X, Chen L, Chen Y (2013) CX43 change in LPS preconditioning against apoptosis of mesenchymal stem cells induced by hypoxia and serum deprivation is associated with ERK signaling pathway. Mol Cell Biochem 380:267–275

    Article  CAS  PubMed  Google Scholar 

  11. Turner MS, Haywood GA, Andreka P, You L, Martin PE, Evans WH, Webster KA, Bishopric NH (2004) Reversible connexin 43 dephosphorylation during hypoxia and reoxygenation is linked to cellular ATP levels. Circ Res 95:726–733

    Article  CAS  PubMed  Google Scholar 

  12. Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Kleber AG, Schuessler RB, Saffitz JE (2000) Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 87:656–662

    Article  CAS  PubMed  Google Scholar 

  13. Tribulová N, Fialová M, Dlugošová K (2006) Myocardial gap junction remodelling in hypetriglyceridemic rat heart is associated with increased vulnerability to ventricular fibrillation. Cardiology 15:32S–33S

    Google Scholar 

  14. Mayama T, Matsumura K, Lin H, Ogawa K, Imanage I (2007) Remodelling of cardiac gap junction connexin 43 and arrhythmogenesis. Exp Clin Cardiol 12:67–76

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Lerner DL, Yamada KA, Schuessler RB, Saffitz JE (2000) Accelerated onset and increased incidence of ventricular arrhythmias induced by ischemia in Cx43-deficient mice. Circulation 101:547–552

    Article  CAS  PubMed  Google Scholar 

  16. Gutstein DE, Morley GE, Tamadonn H, Vaidya D, Schneider MD, Chen J, Chien KR, Stuhlmann H, Fishman GI (2001) Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ Res 88:333–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Okruhlicova L, Tribulova N, Misejkova M, Kucha M, Stetka R, Slezak J, Manoach M (2002) Gap junction remodelling is involved in the susceptibility of diabetic rats to hypokalemia-induced ventricular fibrillation. Acta Histochem 104:387–391

    Article  PubMed  Google Scholar 

  18. Hennan JK, Swillo RE, Morgan GA, Keith JC, Schaub RG, Smith RP, Feldman HS, Haugan K, Kantrowitz J, Wang PJ, Abu-Qare A, Butera J, Larsen BD, Crandall DL (2006) Rotigaptide (ZP123) prevents spontaneous ventricular arrhythmias and reduces infarct size during myocardial ischemia/reperfusion injury in open-chest dogs. J Pharmacol Exp Ther 317:236–243

    Article  CAS  PubMed  Google Scholar 

  19. Zhong JQ, Laurent G, So PP, Hu X, Hennan JK, Dorian P (2007) Effects of ZP123, a gap junction modifier, on defibrillation energy and resuscitation from cardiac arrest in rabbits. J Cardiovasc Pharmacol Ther 12:69–77

    Article  CAS  PubMed  Google Scholar 

  20. Contreras JE, Saez JC, Bukauskas FF, Bennett MVL (2003) Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci 100:11388–11393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Wu X, Huang W, Luo G, Alain LA (2013) Hypoxia induces connexin 43 dysregulation by modulating matrix metalloproteinases via MAPK signaling. Mol Cell Biochem 384:155–162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Solan JL, Lampe PD (2009) Connexin43 phosphorylation: structural changes and biological effects. Biochem J 419(2):261–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Wu J, Taylor RN, Sidell N (2013) Retinoic acid regulates gap junction intercellular communication in human endometrial stromal cells through modulation of the phosphorylation status of connexin43. J Cell Physiol 228:903–910

    Article  CAS  PubMed  Google Scholar 

  24. Zhong JQ, Zhang W, Gao H, Li Y, Zhong M, Li D, Zhang C, Zhang Y (2007) Changes in connexin 43, metalloproteinase and tissue inhibitor of metalloproteinase during tachycardia-induced cardiomyopathy in dogs. Eur J Heart Fail 9:23–29

    Article  CAS  PubMed  Google Scholar 

  25. Siefert SA, Sarkar R (2012) Matrix metalloproteinases in vascular physiology and disease. Vascular 20:210–216

    Article  PubMed  Google Scholar 

  26. Tanaka K, Essick EE, Doros G, Tanriverdi K, Connors LH, Seldin DC, Sam F (2013) Circulating matrix metalloproteinases and tissue inhibitors of metalloproteinases in cardiac amyloidosis. J Am Heart Assoc 2:e005868

    Article  PubMed Central  PubMed  Google Scholar 

  27. Beeri R, Yosefy C, Guerrero JL, Abedat S, Handschumacher MD, Stroud RE, Chaput M, Gilon D, Vlahakes GJ, Spinale FG, Haijar RJ, Levine RA (2007) Early repair of moderate ischemic mitral regurgitation reverses left ventricular remodeling: a functional and molecular study. Circulation 116:288–293

    Article  Google Scholar 

  28. Gramley F, Lorenzen J, Plisiene J, Rakauskas M, Benetis R, Schmid M, Autschbach R, Knackstedt C, Schimpf T, Mischke K, Gressner A, Hanrath P, Kelm M, Schauerte P (2007) Decreased plasminogen activator inhibitor and tissue metalloproteinase inhibitor expression may promote increased metalloproteinase activity with increasing duration of human atrial fibrillation. J Cardiovasc Electrophysiol 18:1076–1082

    Article  PubMed  Google Scholar 

  29. Lalu MM, Pasini E, Schulze CJ, Feffari-Vivaldi M, Ferrari-Vivaldi G, Bachetti T, Schulz (2005) Ischemia-reperfusion injury activates matrix metalloproteinases in the human heart. Eur Heart J 26:27–35

    Article  CAS  PubMed  Google Scholar 

  30. Sawicki G, Salas E, Murat J, Miszta-Lane H, Radomski MW (1997) Release of gelatinase A during platelet activation mediates aggregation. Nature 386:616–619

    Article  CAS  PubMed  Google Scholar 

  31. Abdalvand A, Morton JS, Bourque SL, Quon AL, Davidge ST (2013) Matrix metalloproteinase enhances big-endothelin-1 constriction in mesenteric vessels of pregnant rats with reduced uterine blood flow. Hypertension 61:488–493

    Article  CAS  PubMed  Google Scholar 

  32. Gomes VA, Vieira CS, Jacob-Ferreira AL, Belo VA, Soares GM, Fernandes JBF, Ferriani RA, Tanus-Santos JE (2011) Imbalanced circulating matrix metalloproteinases in polycystic ovary syndrome. Mol Cell Biochem 353:251–257

    Article  CAS  PubMed  Google Scholar 

  33. Uemura K, Li M, Tsutsumi T, Yamazaki T, Kawada T, Kamiya A, Inagaki M, Sunagawa K, Sugimachi M (2007) Efferent vagal nerve stimulation induces tissue inhibitor of metalloproteinase-1 in myocardial ischemia-reperfusion injury in rabbit. Am J Physiol Heart Circ Physiol 293:H2254–H2261

    Article  CAS  PubMed  Google Scholar 

  34. Li JS, Zhong JQ, Liu HZ, Zeng QX, Meng XL, Liu DL, Su GY, Zhang Y (2012) Imbalance between tissue inhibitor of metalloproteinase 1 and matrix metalloproteinase 9 after cardiopulmonary resuscitation. Am J Emerg Med 30:1202–1209

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was sponsored by the Natural Science Foundation of China (81270238) and supported by the Scientific Development Plan of Shandong Province of China (2012G0021850).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-quan Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Li, Js., Liu, Hz. et al. Dynamic alterations of connexin43, matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase-2 during ventricular fibrillation in canine. Mol Cell Biochem 391, 259–266 (2014). https://doi.org/10.1007/s11010-014-2012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2012-8

Keywords

Navigation