Skip to main content
Log in

Methylmalonic acid administration induces DNA damage in rat brain and kidney

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Accumulation of methylmalonic acid (MMA) in tissues and biological fluids is the biochemical hallmark of methylmalonic aciduria. Affected patients present renal failure and severe neurological findings. Considering that the underlying pathomechanisms of tissue damage are not yet understood, in the present work we assessed the in vivo e in vitro effects of MMA on DNA damage in brain and kidney, as well as on p53 and caspase 3 levels, in the presence or absence of gentamicin (acute renal failure model). For in vitro studies, tissue prisms were incubated in the presence of different concentrations of MMA and/or gentamicin for one hour. For in vivo studies, animals received a single injection of gentamicin (70 mg/kg) and/or three injections of MMA (1.67 μmol/g; 11 h interval between injections). The animals were killed 1 h after the last MMA injection. Controls received saline in the same volumes. DNA damage was analyzed by the comet assay. We found that MMA and gentamicin alone or combined in vitro increased DNA damage in cerebral cortex and kidney of rats. Furthermore, MMA administration increased DNA damage in both brain and kidney. Gentamicin per se induced DNA damage only in kidney, and the association of MMA plus gentamicin also caused DNA damage in cerebral cortex and kidney. On the other hand, p53 and caspase 3 levels were not altered by the administration of MMA and/or gentamicin. Our findings provide evidence that DNA damage may contribute to the neurological and renal damage found in patients affected by methylmalonic aciduria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Deodato F, Boenzi S, Santorelli FM, Dionisi-Vici C (2006) Methylmalonic and propionic aciduria. Am J Med Genet Semin Med Genet 142C:104–112

    Article  CAS  Google Scholar 

  2. Fenton WA, Gravel RA (2001) Rosenblatt DS Disorders of propionate and methylmalonate metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 2165–2194

    Google Scholar 

  3. Brismar J, Ozand PT (1994) CT and MR of the brain in disorders of the propionate and methylmalonate metabolism. Am J Neuroradiol 15:459–1473

    Google Scholar 

  4. Morath MA, Okun JG, Müller IB, Sauer SW, Hörster F, Hoffmann GF, Kölker S (2008) Neurodegeneration and chronic renal failure in methylmalonic aciduria–A pathophysiological approach. J Inherit Metab Dis 31:35–43

    Article  CAS  PubMed  Google Scholar 

  5. Saito T, Saito O, Maeda T, Ito C, Ando Y, Yamagata T, Muto S, Momoi M, Kusano F (2009) Metabolic and hemodynamic advantages of an acetate-free citrate dialysate in a uremic case of congenital methylmalonic acidemia. Am J Kidney Dis 54:764–769

    Article  CAS  PubMed  Google Scholar 

  6. Brusque AM, Borba Rosa R, Schuck PF, Dalcin KB, Ribeiro CA, Silva CG, Wannmacher CM, Dutra-Filho CS, Wyse AT, Briones P, Wajner M (2002) Inhibition of the mitochondrial respiratory chain complex activities in rat cerebral cortex by methylmalonic acid. Neurochem Int 40:593–601

    Article  CAS  PubMed  Google Scholar 

  7. Schuck PF, Rosa RB, Pettenuzzo LF, Sitta A, Wannmacher CM, Wyse AT, Wajner M (2004) Inhibition of mitochondrial creatine kinase activity from rat cerebral cortex by methylmalonic acid. Neurochem Int 45:661–667

    Article  CAS  PubMed  Google Scholar 

  8. Royes LF, Fighera MR, Furian AF, Oliveira MS, Silva G, Malfatti CR, Schneider PH, Braga AL, Wajner M, Mello CF (2003) Creatine protects against the convulsive behavior and lactate production elicited by the intrastriatal injection of methylmalonate. Neuroscience 118:1079–1090

    Article  CAS  PubMed  Google Scholar 

  9. Fleck J, Ribeiro MC, Schneider CM, Sinhorin VD, Rubin MA, Mello CF (2004) Intrastriatal malonate administration induces convulsive behaviour in rats. J Inherit Metab Dis 27:211–219

    Article  CAS  PubMed  Google Scholar 

  10. Pettenuzzo LF, Ferreira GC, Schmidt AL, Dutra-Filho CS, Wyse ATS, Wajner M (2006) Differential inhibitory effects of methylmalonic acid on respiratory chain complex activities in rat tissues. Int J Devl Neuroscience 24:45–52

    Article  CAS  Google Scholar 

  11. Mirandola SR, Melo DR, Schuck PF, Ferreira GC, Wajner M, Castilho RF (2008) Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis 31:44–54

    Article  CAS  PubMed  Google Scholar 

  12. Brusque AM, Rotta LN, Tavares RG, Emanuelli T, Schwarzbold CV, Dutra-Filho CS, Wyse ATS, Wannmacher CMD, Souza DOG, Wajner M (2001) Effects of methylmalonic and propionic acids on glutamate uptake by synaptosomes and synaptic vesicles and on glutamate release by synaptosomes from cerebral cortex of rats. Brain Res 920:194–201

    Article  CAS  PubMed  Google Scholar 

  13. Fontella F, Pulronick V, Gassen E, Wannmacher CMD, Klein AB, Wajner M, Dutra-Filho CS (2000) Propionic and L-methylmalonic acids induce oxidative stress in brain of young rats. NeuroReport 28:541–544

    Article  Google Scholar 

  14. Pettenuzzo LF, Schuck PF, Wyse AT, Wannmacher CMD, Dutra-Filho CS, Netto CA, Wajner M (2003) Ascorbic acid prevents water maze behavioral deficits caused by early postnatal methylmalonic acid administration in the rat. Brain Res 976:234–242

    Article  CAS  PubMed  Google Scholar 

  15. Kashtan CE, Abousedira M, Rozen S, Manivel JC, McCann M, Tuchman M (1998) Chronic administration of methylmaloic acid (MMA) to rats causes proteinuria and renal tubular injury (abstract). Pediatr Res 43:309

    Article  Google Scholar 

  16. Ribas GS, Manfredini V, de Marco MG, Vieira RB, Wayhs CY, Vanzin CS, Biancini GB, Wajner M, Vargas CR (2010) Prevention by L-carnitine of DNA damage induced by propionic and L-methylmalonic acids in human peripheral leukocytes in vitro. Mutat Res 702:123–128

    Article  CAS  PubMed  Google Scholar 

  17. Balakumar P, Rohilla A, Thangathirupathi A (2010) Gentamicin-induced nephrotoxicity: do we have a promising therapeutic approach to blunt it? Pharmacol Res 62:179–186

    Article  CAS  PubMed  Google Scholar 

  18. Cuzzocrea S, Mazzon E, Dugo L, Serraino I, Di Paola R, Britti D, De Sarro A, Pierpaoli S, Caputi A, Masini E, Salvemini D (2002) A role for superoxide in gentamicin-mediated nephropathy in rats Eur J Pharmacol 450:67–76

    CAS  PubMed  Google Scholar 

  19. Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ (2011) New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int 79:33–45

    Article  CAS  PubMed  Google Scholar 

  20. Walker PD, Barri Y, Shah SV (1999) Oxidant mechanisms in gentamicin nephrotoxicity. Ren Fail 21:433–442

    Article  CAS  PubMed  Google Scholar 

  21. Affonso AC, Machado DG, Malgarin F, Fraga DB, Ghedim F, Zugno A, Streck EL, Schuck PF, Ferreira GC (2013) Increased susceptibility of brain acetylcholinesterase activity to methylmalonate in young rats with renal failure. Metab Brain Dis 28:493–500

    Article  CAS  PubMed  Google Scholar 

  22. Schuck PF, Alves L, Pettenuzzo LF, Felisberto F, Rodrigues LB, Freitas BW, Petronilho F, Dal-Pizzol F, Streck EL, Ferreira GC (2013) Acute renal failure potentiates methylmalonate-induced oxidative stress in brain and kidney of rats. Free Radic Res 47:233–240

    Article  CAS  PubMed  Google Scholar 

  23. Schuck PF, Januário SB, Simon KR, Scaini G, Mafioleti RL, Malgarin F, Pettenuzzo LF, Streck EL, Ferreira GC (2013) Acute renal failure potentiates brain energy dysfunction elicited by methylmalonic acid. Int J Dev Neurosci 31:245–249

    Article  CAS  PubMed  Google Scholar 

  24. Dutra JC, Wajner M, Wannmacher CM, Wannmacher LE, Pires RF, Rosa-Júnior A (1991) Effect of postnatal methylmalonate administration on adult rat behavior. Braz J Med Bio Res 24:595–605

    CAS  Google Scholar 

  25. Petronilho F, Constantino L, Souza B, Reinke A, Martins MR, Fraga CM, Ritter C, Dal-Pizzol F (2009) Efficacy of the combination of N-acetylcysteine and desferrioxamine in the prevention and treatment of gentamicin-induced acute renal failure in male Wistar rats. Nephrol Dial Transplant 24:2077–2082

    Article  CAS  PubMed  Google Scholar 

  26. Tice RR, Agurell D, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  PubMed  Google Scholar 

  27. Singh N, McCoy M, Tice R, Schneider E (1988) A simple technique for quantification of low levels of DNA damage in individuals cells. Exp Cell Res 175:184–191

    Article  CAS  PubMed  Google Scholar 

  28. Speit G, Hartmann A (1995) The contribution of excision repair to the DNA effects seen in the alkaline single cell gel test (comet assay). Mutagenesis 10:555–559

    Article  CAS  PubMed  Google Scholar 

  29. Liao W, McNutt MA, Zhu WG (2009) The comet assay: a sensitive method for detecting DNA damage in individual cells. Methods 48:46–53

    Article  CAS  PubMed  Google Scholar 

  30. Cooke MS, Olinski R, Evans MD (2006) Does measurement of oxidative damage to DNA has clinical significance? Clin Chim Acta 365:30–49

    Article  CAS  PubMed  Google Scholar 

  31. Altieri F, Grillo C, Maceroni M, Chichiarelli S (2008) DNA damage and repair: from molecular mechanisms to health implications. Antioxid Redox Signal 10:891–937

    Article  CAS  PubMed  Google Scholar 

  32. Sitta A, Manfredini V, Biasi L, Tremea R, Schwartz IVD, Wajner M, Vargas CR (2009) Evidence that DNA damage is associated to phenylalanine blood levels in leukocytes from phenylketonuric patients. Mutat Res 679:13–16

    Article  CAS  PubMed  Google Scholar 

  33. Fernandes CG, Borges CG, Seminotti B, Amaral AU, Knebel LA, Eichler P, Oliveira AB, Leipnitz G, Wajner M (2011) Experimental evidence that methylmalonic acid provokes oxidative damage and compromises antioxidant defenses in nerve terminal and striatum of young rats cell. Mol Neurobiol 31:775–785

    Article  CAS  Google Scholar 

  34. Srinivas KW, Want MA, Freigoun OS, Balakrishna N (2001) Methylmalonic acidemia with renal involvement: a case report and review of literature. Saudi J Kidney Dis Trasnplant 12:49–53

    CAS  Google Scholar 

  35. Maldonado PD, Barrera D, Rivero I, Mata R, Medina-Campos ON, Hernández-Pando R, Pedraza-Chaverrí J (2003) Antioxidant S-allylcysteine prevents gentamicin-induced oxidative stress and renal damage. Free Radic Biol Med 35:317–324

    Article  CAS  PubMed  Google Scholar 

  36. Karahan I, Atesahin A, Yılmaz S, Ceribası AO, Sakin F (2005) Protective effect of lycopene on gentamicin-induced oxidative stress and nephrotoxicity in rats. Toxicology 215:198–204

    Article  CAS  PubMed  Google Scholar 

  37. Banday AA, Farooq N, Priyamvada S, Yusufi ANK, Khan F (2008) Time dependent effects of gentamicin on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in rat kidney tissues. Life Sci 82:450–459

    Article  CAS  PubMed  Google Scholar 

  38. McLaughlin BA, Nelson D, Silver IA, Erecinska M, Chesselet MF (1998) Methylmalonate toxicity in primary neuronal cultures. Neuroscience 86:279–290

    Article  CAS  PubMed  Google Scholar 

  39. Markesbery WR, Lovell MA (2006) DNA oxidation in Alzheimer’s disease. Antioxid Redox Signal 8:2039–2045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Universidade do Extremo Sul Catarinense (UNESC), Conselho Nacional de Pesquisa e Desenvolvimento Tecnológico (CNPq), Fundação de Amparo à Pesquisa e Inovação de Santa Catarina (FAPESC), and Núcleo de Excelência em Neurociências de Santa Catarina (NENASC; PRONEX program CNPq/FAPESC).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia F. Schuck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, V.M., Dal Pont, H.S., Leffa, D.D. et al. Methylmalonic acid administration induces DNA damage in rat brain and kidney. Mol Cell Biochem 391, 137–145 (2014). https://doi.org/10.1007/s11010-014-1996-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-1996-4

Keywords

Navigation