Skip to main content

Advertisement

Log in

Osteocyte-induced angiogenesis via VEGF–MAPK-dependent pathways in endothelial cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Recently, it has been suggested osteocytes control the activities of bone formation (osteoblasts) and resorption (osteoclast), indicating their important regulatory role in bone remodelling. However, to date, the role of osteocytes in controlling bone vascularisation remains unknown. Our aim was to investigate the interaction between endothelial cells and osteocytes and to explore the possible molecular mechanisms during angiogenesis. To model osteocyte/endothelial cell interactions, we co-cultured osteocyte cell line (MLOY4) with endothelial cell line (HUVECs). Co-cultures were performed in 1:1 mixture of osteocytes and endothelial cells or by using the conditioned media (CM) transfer method. Real-time cell migration of HUVECs was measured with the transwell migration assay and xCELLigence system. Expression levels of angiogenesis-related genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The effect of vascular endothelial growth factor (VEGF) and mitogen-activated phosphorylated kinase (MAPK) signaling were monitored by western blotting using relevant antibodies and inhibitors. During the bone formation, it was noted that osteocyte dendritic processes were closely connected to the blood vessels. The CM generated from MLOY4 cells-activated proliferation, migration, tube-like structure formation, and upregulation of angiogenic genes in endothelial cells suggesting that secretory factor(s) from osteocytes could be responsible for angiogenesis. Furthermore, we identified that VEGF secreted from MLOY4-activated VEGFR2–MAPK–ERK-signaling pathways in HUVECs. Inhibiting VEGF and/or MAPK–ERK pathways abrogated osteocyte-mediated angiogenesis in HUVEC cells. Our data suggest an important role of osteocytes in regulating angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schipani E, Maes C, Carmeliet G, Semenza GL (2009) Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. J Bone Miner Res 24:1347–1353. doi:10.1359/jbmr.090602

    Article  CAS  PubMed  Google Scholar 

  2. Clarkin CE, Emery RJ, Pitsillides AA, Wheeler-Jones CP (2008) Evaluation of VEGF-mediated signaling in primary human cells reveals a paracrine action for VEGF in osteoblast-mediated crosstalk to endothelial cells. J Cell Physiol 214:537–544. doi:10.1002/jcp.21234

    Article  CAS  PubMed  Google Scholar 

  3. Villars F, Guillotin B, Amedee T, Dutoya S, Bordenave L, Bareille R, Amedee J (2002) Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication. Am J Physiol Cell Physiol 282:C775–C785. doi:10.1152/ajpcell.00310.2001

    Article  CAS  PubMed  Google Scholar 

  4. Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 99:9656–9661. doi:10.1073/pnas.152324099

    Article  CAS  PubMed  Google Scholar 

  5. Xue Y, Xing Z, Hellem S, Arvidson K, Mustafa K (2009) Endothelial cells influence the osteogenic potential of bone marrow stromal cells. Biomed Eng Online 8:34. doi:10.1186/1475-925X-8-34

    Article  PubMed Central  PubMed  Google Scholar 

  6. Cackowski FC, Anderson JL, Patrene KD, Choksi RJ, Shapiro SD, Windle JJ, Blair HC, Roodman GD (2010) Osteoclasts are important for bone angiogenesis. Blood 115:140–149. doi:10.1182/blood-2009-08-237628

    Article  CAS  PubMed  Google Scholar 

  7. Engsig MT, Chen QJ, Vu TH, Pedersen AC, Therkidsen B, Lund LR, Henriksen K, Lenhard T, Foged NT, Werb Z, Delaisse JM (2000) Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 151:879–889

    Article  CAS  PubMed  Google Scholar 

  8. Yang Q, McHugh KP, Patntirapong S, Gu X, Wunderlich L, Hauschka PV (2008) VEGF enhancement of osteoclast survival and bone resorption involves VEGF receptor-2 signaling and beta3-integrin. Matrix Biol 27:589–599. doi:10.1016/j.matbio.2008.06.005

    Article  PubMed  Google Scholar 

  9. Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone: role of the lacuno-canalicular network. FASEB J 13:S101–S112

    CAS  PubMed  Google Scholar 

  10. Klein-Nulend J, Nijweide PJ, Burger EH (2003) Osteocyte and bone structure. Curr Osteoporos Rep 1:5–10

    Article  PubMed  Google Scholar 

  11. Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM (2012) Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur Cell Mater 23:13–27. doi:vol023a02

    CAS  PubMed  Google Scholar 

  12. Cheung WY, Simmons CA, You L (2012) Osteocyte apoptosis regulates osteoclast precursor adhesion via osteocytic IL-6 secretion and endothelial ICAM-1 expression. Bone 50:104–110. doi:10.1016/j.bone.2011.09.052

    Article  CAS  PubMed  Google Scholar 

  13. Heino TJ, Hentunen TA, Vaananen HK (2004) Conditioned medium from osteocytes stimulates the proliferation of bone marrow mesenchymal stem cells and their differentiation into osteoblasts. Exp Cell Res 294:458–468. doi:10.1016/j.yexcr.2003.11.016

    Article  CAS  PubMed  Google Scholar 

  14. Yellowley CE, Li Z, Zhou Z, Jacobs CR, Donahue HJ (2000) Functional gap junctions between osteocytic and osteoblastic cells. J Bone Miner Res 15:209–217. doi:10.1359/jbmr.2000.15.2.209

    Article  CAS  PubMed  Google Scholar 

  15. Heino TJ, Hentunen TA, Vaananen HK (2002) Osteocytes inhibit osteoclastic bone resorption through transforming growth factor-beta: enhancement by estrogen. J Cell Biochem 85:185–197. doi:10.1002/jcb.10109

    Article  CAS  PubMed  Google Scholar 

  16. Zelzer E, Olsen BR (2005) Multiple roles of vascular endothelial growth factor (VEGF) in skeletal development, growth, and repair. Curr Top Dev Biol 65:169–187. doi:10.1016/S0070-2153(04)65006-X

    Article  CAS  PubMed  Google Scholar 

  17. Fukuda R, Hirota K, Fan F, Jung YD, Ellis LM, Semenza GL (2002) Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem 277:38205–38211. doi:10.1074/jbc.M203781200

    Article  CAS  PubMed  Google Scholar 

  18. Xu J, Liu X, Jiang Y, Chu L, Hao H, Liua Z, Verfaillie C, Zweier J, Gupta K, Liu Z (2008) MAPK/ERK signalling mediates VEGF-induced bone marrow stem cell differentiation into endothelial cell. J Cell Mol Med 12:2395–2406. doi:10.1111/j.1582-4934.2008.00266.x

    Article  CAS  PubMed  Google Scholar 

  19. Arnaoutova I, Kleinman HK (2010) In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc 5:628–635. doi:10.1038/nprot.2010.6

    Article  CAS  PubMed  Google Scholar 

  20. Prasadam I, Mao X, Shi W, Crawford R, Xiao Y (2012) Combination of MEK–ERK inhibitor and hyaluronic acid has a synergistic effect on anti-hypertrophic and pro-chondrogenic activities in osteoarthritis treatment. J Mol Med (Berl). doi:10.1007/s00109-012-0953-5

  21. Prasadam I, Friis T, Shi W, van Gennip S, Crawford R, Xiao Y (2010) Osteoarthritic cartilage chondrocytes alter subchondral bone osteoblast differentiation via MAPK signalling pathway involving ERK1/2. Bone 46:226–235. doi:10.1016/j.bone.2009.10.014

    Article  CAS  PubMed  Google Scholar 

  22. Prasadam I, Mao X, Wang Y, Shi W, Crawford R, Xiao Y (2012) Inhibition of p38 pathway leads to OA-like changes in a rat animal model. Rheumatology (Oxford) 51:813–823. doi:10.1093/rheumatology/ker360

    Article  CAS  Google Scholar 

  23. Prasadam I, van Gennip S, Friis T, Shi W, Crawford R, Xiao Y (2010) ERK-1/2 and p38 in the regulation of hypertrophic changes of normal articular cartilage chondrocytes induced by osteoarthritic subchondral osteoblasts. Arthr Rheum 62:1349–1360. doi:10.1002/art.27397

    Article  CAS  Google Scholar 

  24. Jaiprakash A, Prasadam I, Feng JQ, Liu Y, Crawford R, Xiao Y (2012) Phenotypic characterization of osteoarthritic osteocytes from the sclerotic zones: a possible pathological role in subchondral bone sclerosis. Int J Biol Sci 8:406–417. doi:10.7150/ijbs.4221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Afara I, Prasadam I, Crawford R, Xiao Y, Oloyede A (2012) Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation to Mankin score. Osteoarthr Cartil. doi:10.1016/j.joca.2012.07.007

    PubMed  Google Scholar 

  26. Burra S, Nicolella DP, Jiang JX (2011) Dark horse in osteocyte biology: glycocalyx around the dendrites is critical for osteocyte mechanosensing. Commun Integr Biol 4:48–50. doi:10.4161/cib.4.1.13646

    PubMed  Google Scholar 

  27. Bonewald LF (2005) Generation and function of osteocyte dendritic processes. J Musculoskelet Neuronal Interact 5:321–324

    CAS  PubMed  Google Scholar 

  28. Weinstein RS, Nicholas RW, Manolagas SC (2000) Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J Clin Endocrinol Metab 85:2907–2912

    Article  CAS  PubMed  Google Scholar 

  29. O’Brien CA, Jia D, Plotkin LI, Bellido T, Powers CC, Stewart SA, Manolagas SC, Weinstein RS (2004) Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145:1835–1841. doi:10.1210/en.2003-0990

    Article  PubMed  Google Scholar 

  30. Aguirre JI, Plotkin LI, Stewart SA, Weinstein RS, Parfitt AM, Manolagas SC, Bellido T (2006) Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res 21:605–615. doi:10.1359/jbmr.060107

    Article  PubMed  Google Scholar 

  31. Jilka RL, Weinstein RS, Parfitt AM, Manolagas SC (2007) Quantifying osteoblast and osteocyte apoptosis: challenges and rewards. J Bone Miner Res 22:1492–1501. doi:10.1359/jbmr.070518

    Article  PubMed  Google Scholar 

  32. Colopy SA, Benz-Dean J, Barrett JG, Sample SJ, Lu Y, Danova NA, Kalscheur VL, Vanderby R Jr, Markel MD, Muir P (2004) Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading. Bone 35:881–891. doi:10.1016/j.bone.2004.05.024

    Article  CAS  PubMed  Google Scholar 

  33. Cai J, Jiang WG, Ahmed A, Boulton M (2006) Vascular endothelial growth factor-induced endothelial cell proliferation is regulated by interaction between VEGFR-2, SH-PTP1 and eNOS. Microvasc Res 71:20–31. doi:10.1016/j.mvr.2005.10.004

    Article  CAS  PubMed  Google Scholar 

  34. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66. doi:10.1038/376062a0

    Article  CAS  PubMed  Google Scholar 

  35. Lobov IB, Brooks PC, Lang RA (2002) Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci USA 99:11205–11210. doi:10.1073/pnas.172161899

    Article  CAS  PubMed  Google Scholar 

  36. Hangai M, Murata T, Miyawaki N, Spee C, Lim JI, He S, Hinton DR, Ryan SJ (2001) Angiopoietin-1 upregulation by vascular endothelial growth factor in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 42:1617–1625

    CAS  PubMed  Google Scholar 

  37. Ball SG, Shuttleworth CA, Kielty CM (2007) Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J Cell Biol 177:489–500. doi:10.1083/jcb.200608093

    Article  CAS  PubMed  Google Scholar 

  38. Pendu R, Terraube V, Christophe OD, Gahmberg CG, de Groot PG, Lenting PJ, Denis CV (2006) P-selectin glycoprotein ligand 1 and beta2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor. Blood 108:3746–3752. doi:10.1182/blood-2006-03-010322

    Article  CAS  PubMed  Google Scholar 

  39. Somanath PR, Malinin NL, Byzova TV (2009) Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis 12:177–185. doi:10.1007/s10456-009-9141-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Starke RD, Ferraro F, Paschalaki KE, Dryden NH, McKinnon TA, Sutton RE, Payne EM, Haskard DO, Hughes AD, Cutler DF, Laffan MA, Randi AM (2011) Endothelial von Willebrand factor regulates angiogenesis. Blood 117:1071–1080. doi:10.1182/blood-2010-01-264507

    Article  CAS  PubMed  Google Scholar 

  41. Genersch E, Hayess K, Neuenfeld Y, Haller H (2000) Sustained ERK phosphorylation is necessary but not sufficient for MMP-9 regulation in endothelial cells: involvement of Ras-dependent and -independent pathways. J Cell Sci 113(Pt 23):4319–4330

    CAS  PubMed  Google Scholar 

  42. Funahashi Y, Shawber CJ, Sharma A, Kanamaru E, Choi YK, Kitajewski J (2011) Notch modulates VEGF action in endothelial cells by inducing Matrix metalloprotease activity. Vasc Cell 3:2. doi:10.1186/2045-824X-3-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Hashiramoto A, Sakai C, Yoshida K, Tsumiyama K, Miura Y, Shiozawa K, Nose M, Komai K, Shiozawa S (2007) Angiopoietin 1 directly induces destruction of the rheumatoid joint by cooperative, but independent, signaling via ERK/MAPK and phosphatidylinositol 3-kinase/Akt. Arthr Rheum 56:2170–2179. doi:10.1002/art.22727

    Article  CAS  Google Scholar 

  44. Ge C, Xiao G, Jiang D, Franceschi RT (2007) Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol 176:709–718. doi:10.1083/jcb.200610046

    Article  CAS  PubMed  Google Scholar 

  45. Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 12:9–18. doi:10.1038/sj.cr.7290105

    Article  CAS  PubMed  Google Scholar 

  46. Yashima R, Abe M, Tanaka K, Ueno H, Shitara K, Takenoshita S, Sato Y (2001) Heterogeneity of the signal transduction pathways for VEGF-induced MAPKs activation in human vascular endothelial cells. J Cell Physiol 188:201–210. doi:10.1002/jcp.1107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank staff at Medical Engineering Research Facility (MERF) for assistance in the care of in vivo animals.

Conflict of interest

Authors declare there is no conflict of interest associated with this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indira Prasadam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasadam, I., Zhou, Y., Du, Z. et al. Osteocyte-induced angiogenesis via VEGF–MAPK-dependent pathways in endothelial cells. Mol Cell Biochem 386, 15–25 (2014). https://doi.org/10.1007/s11010-013-1840-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1840-2

Keywords

Navigation