Skip to main content

Advertisement

Log in

The effects of cyclooxygenase and nitric oxide synthase inhibition on oxidative stress in isolated rat heart

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 28 June 2013

Abstract

Despite the widespread clinical use of cyclooxygenase (COX) inhibitors, dilemmas still exist about potential impact of these drugs on cardiovascular system. The present study was aimed to estimate the effects of different COX inhibitors (meloxicam, acetylsalicylic acid [ASA], and SC-560) on oxidative stress in isolated rat heart, with special focus on l-arginine/NO system. The hearts of male Wistar albino rats (total number n = 96, each group 12 rats, 8 weeks old, body mass 180–200 g) were retrogradely perfused according to the Langendorff technique at gradually increased perfusion pressure (40–120 cmH2O). After control experiments the hearts were perfused with the following drugs: 100 μmol/l ASA (Aspirin), alone or in combination with 30 μmol/l l-NAME, 0.3 μmol/l meloxicam (movalis) with or without 30 μmol/l l-NAME, 3 μmol/l meloxicam (alone or in combination with 30 μmol/l l-NAME), 30 μmol/l l-NAME, and administration of 0.25 μmol/l SC-560. In samples of coronary venous effluent the following oxidative stress markers were measured spectrophotometrically: index of lipid peroxidation (measured as thiobarbituric acid reactive substances [TBARS]), superoxide anion radical release (O2 ), and hydrogen peroxide (H2O2). While ASA was found to have an adverse influence on redox balance in coronary circulation, and coronary perfusion, meloxicam and SC-560 do not negatively affect the intact model of the heart. Furthermore, all effects were modulated by NOS inhibition. It seems that interaction between COX and l-arginine/NO system truly exists in coronary circulation, and can be one of the possible causes for achieved effects. That means: those effects induced by different inhibitors of COX are modulated by subsequent inhibition of NOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CF:

Coronary flow

CPP:

Coronary perfusion pressure

HRPO:

Peroxidase from horse radish

MDA:

Malonyldialdehyde

COX:

Cyclooxygenase

NOS:

Nitric oxide synthase

MTHFR:

Methylene tetrahydrofolate reductase

NBT:

Nitro blue tetrazolium

NO:

Nitric oxide

PRS:

Phenol red solution

TBARS:

Thiobarbituric acid reactive substances

References

  1. Masferrer JL, Zweifel BS, Manning PT, Hauser SD, Leahy KM, Smith WG, Isakson PC, Seibert K (1994) Selective inhibition of inducible cyclooxygenase 2 in vivo is anti-inflammatory and nonulcerogenic. Proc Natl Acad Sci USA 91(8):3228–3232. doi:10.1073/pnas.91.8.3228

    Article  CAS  PubMed  Google Scholar 

  2. Virdis A, Colucci R, Fornai M, Blandizzi C, Duranti E, Pinto S, Bernardini N, Segnani C, Antonioli L, Taddei S, Salvetti A, Del Tacca M (2005) Cyclooxygenase-2 inhibition improves vascular endothelial dysfunction in a rat model of endotoxic shock: role of inducible nitric oxide synthase and oxidative stress. J Pharmacol Exp Ther 312(3):945–953. doi:10.1124/jpet.104.077644

    Article  CAS  PubMed  Google Scholar 

  3. Oshima K, Takeyoshi I, Tsutsumi H, Mohara J, Ohki S, Koike N, Nameki T, Matsumoto K, Morishita Y (2006) Inhibition of cyclooxygenase-2 improves cardiac function following long-term preservation. J Surg Res 135(2):380–384. doi:10.1016/j.jss.2006.03.044

    Article  CAS  PubMed  Google Scholar 

  4. Fu Y, Wang Z, Chen WL, Moore PK, Zhu YZ (2007) Cardioprotective effects of nitric oxide–aspirin in myocardial ischemia-reperfused rats. Am J Physiol Heart Circ Physiol 293(3):H1545–H1552. doi:10.1152/ajpheart.00064.2007

    Article  CAS  PubMed  Google Scholar 

  5. Bombardier C, Laine L, Reicin A et al (2000) Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med 343:1520–1528. doi:10.1056/NEJM200011233432103

    Article  CAS  PubMed  Google Scholar 

  6. Gottlieb S (2001) COX-2 inhibitors may increase risk of heart attack. BMJ 323:471. doi:10.1136/bmj.323.7311.471/a

    Article  CAS  PubMed  Google Scholar 

  7. Cunnington M, Webb D, Qizilbash N et al (2008) Risk of ischaemic cardiovascular events from selective cyclooxygenase-2 inhibitors in osteoarthritis. Pharmacoepidemiol Drug Saf 17:601–608. doi:10.1002/pds.1590

    Article  PubMed  Google Scholar 

  8. Sorensen R, Abildstrom SZ, Torp-Pedersen C, Gislason GH (2008) Use of selective cyclooxygenase-2 inhibitors and nonselective nonsteroidal anti-inflammatory drugs in high doses increases mortality and risk of reinfarction in patients with prior myocardial infarction. J Cardiovasc Nurs 23:14–19. doi:10.1097/01

    Article  PubMed  Google Scholar 

  9. Saito T, Rodger IW, Hu F, Robinson R, Huynh T, Giaid A (2004) Inhibition of COX pathway in experimental myocardial infarction. J Mol Cell Cardiol 37:71–77. doi:10.1016

    Article  CAS  PubMed  Google Scholar 

  10. Straino S, Salloum FN, Baldi A et al (2007) Protective effects of parecoxib, a cyclo-oxygenase-2 inhibitor, in postinfarction remodeling in the rat. J Cardiovasc Pharmacol 50:571–577. doi:10.1097/FJC.0b013e31814b91cb

    Article  CAS  PubMed  Google Scholar 

  11. LaPointe MC, Mendez M, Leung A, Tao Z, Yang XP (2004) Inhibition of cyclooxygenase-2 improves cardiac function after myocardial infarction in the mouse. Am J Physiol Heart Circ Physiol 286:H1416–H1424. doi:10.1152/ajpheart.00136.2003

    Article  CAS  PubMed  Google Scholar 

  12. Timmers L, Sluijter JP, Verlaan CW et al (2007) Cyclooxygenase-2 inhibition increases mortality, enhances left ventricular remodeling, and impairs systolic function after myocardial infarction in the pig. Circulation 23:326–332. doi:10.1161/CIRCULATIONAHA.106.647230

    Article  Google Scholar 

  13. Mason RP, Walter MF, Day CA, Jacob RF (2007) A biological rationale for the cardiotoxic effects of rofecoxib: comparative analysis with other COX-2 selective agents and NSAids. Subcell Biochem 42:175–190

    Article  PubMed  Google Scholar 

  14. Yarishkin Oleg V, Eun MH, Donggyu K, Jae CY, Sang SK et al (2009) Diclofenac, a non-steroidal anti-inflammatory drug, inhibits L-type Ca2+ channels in neonatal rat ventricular cardiomyocytes. Korean Physiol Soc Korean Soc Pharmacol 13(6):437–442. doi:10.4196/kjpp.2009.13.6.437

    Article  CAS  Google Scholar 

  15. Seon MB, Jin SA, Hae SN, Jaeyong P, Sang SK, Deok RK (2010) Proteomic analysis in NSAIDs-treated primary cardiomyocytes. J Proteomics 73(4):721–732. doi:10.1016/j.jprot.2009.10.004

    Article  Google Scholar 

  16. Weiss HA, Forman D (1996) Aspirin, non-steroidal anti-inflammatory drugs and protection from colorectal cancer: a review of the epidemiological evidence. Scand J Gastroenterol 200(31):137–141

    Article  Google Scholar 

  17. Villegas I, Martín MJ, La Casa C, Motilva V, De La Lastra CA (2002) Effects of oxicam inhibitors of cyclooxygenase on oxidative stress generation in rat gastric mucosa. A comparative study. Free Radic Res 36(7):769–77

    Google Scholar 

  18. Burak Cimen MY, Cimen OB, Eskandari G, Sahin G, Erdoğan C, Atik U (2003) In vivo effects of meloxicam, celecoxib, and ibuprofen on free radical metabolism in human erythrocytes. Drug Chem Toxicol 26(3):169–176. doi:10.1081/DCT-120022645

    Article  CAS  PubMed  Google Scholar 

  19. Walter MF, Jacob RF, Day CA, Dahlborg R, Weng Y, Mason RP (2004) Sulfone COX-2 inhibitors increase susceptibility of human LDL and plasma to oxidative modification: comparison to sulfonamide COX-2 inhibitors and NSAIDs. Atherosclerosis 177(2):235–243. doi::10.1016/j.atherosclerosis.2004.10.001

    Article  CAS  PubMed  Google Scholar 

  20. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Google Scholar 

  21. Novokmet S, Jakovljevic VLj, Jankovic S, et al. (2009) Human platelets perfusion through isolated guinea-pig heart: the effects on coronary flow and oxidative stress markers. Gen Physiol Biophys 28:98–104

  22. Heindl B, Becker BF (2001) Aspirin, but not the more selective cyclooxygenase (COX)-2 inhibitors meloxicam and SC 58125, aggravates postischaemic cardiac dysfunction, independent of COX function. Naunyn Schmiedebergs Arch Pharmacol 363(2):233–240. doi:10.1007/s002100000349

    Article  CAS  PubMed  Google Scholar 

  23. Auclair C, Voisin E (1985) Nitroblue tetrazolium reduction. In: Greenvvald RA (ed) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 123–132

    Google Scholar 

  24. Pick E, Keisari Y (1980) A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods 38:161–170. doi:10.1016/0022-1759(80)90340-3

    Article  CAS  PubMed  Google Scholar 

  25. Karmazyn M, Neely JR (1988) Evidence for a direct protective effect pf aspirin on the ischemic and reperfused heart. Circulation 78:16

    Google Scholar 

  26. Zivkovic V, Djuric D, Turjacanin-Pantelic D, Marinkovic Z, Stefanovic Dj, Srejovic I, Jakovljević VLj (2013) The effects of cyclooxygenase and nitric oxide synthase inhibition on cardiodynamic parameters and coronary flow in isolated rat heart. Exp Clin Cardiol (in press)

  27. Kawabata H, Sugiyama K, Katori R (1996) Effect of acetylsalicylic acid on metabolism and contractility in the ischemic reperfused heart. Jpn Circ J 60:961–971. doi:10.1253/jcj.60.961

    Article  CAS  PubMed  Google Scholar 

  28. Djurić D, Vusanović A, Jakovljević VLj (2007) The effects of folic acid and nitric oxide synthase inhibition on coronary flow and oxidative stress markers in isolated rat heart. Mol Cell Biochem 300(1–2):177–183. doi:10.1007/s11010-006-9381-6

    Article  PubMed  Google Scholar 

  29. Radomski MW, Palmer RM, Moncada S (1990) An l-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 87:5193–97

    Google Scholar 

  30. Kumar S, Prahalathan P, Raja B (2011) Antihypertensive and antioxidant potential of vanillic acid, a phenolic compound in l-NAME-induced hypertensive rats: a dose-dependence study. Redox Rep 16(5):208–215. doi:10.1179/1351000211Y.0000000009

    Article  CAS  PubMed  Google Scholar 

  31. Kopff M, Kopff A, Kowalczyk E (2007) The effects of nonsteroidal anti-inflammatory drugs on oxidative/antioxidative balance. Pol Merkur Lekarski 23(135):184–7

    Google Scholar 

  32. Adderley SR, Fitzgerald DJ (1999) Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. J Biol Chem 274:5038–5046. doi:10.1074/jbc.274.8.5038

    Article  CAS  PubMed  Google Scholar 

  33. Mahmood K-AS, Jawad HA, Jawad AM (2009) Non-steroidal anti-inflammatory drugs (NSAIDs), free radicals and reactive oxygen species (ros): a review of literature. MJBU 27. doi:10.1517/14740338.2011.529898

  34. Wu R, Lamontagne D, de Champlain J (2002) Antioxidative properties of acetylsalicylic Acid on vascular tissues from normotensive and spontaneously hypertensive rats. Circulation 105(3):387–392. doi:10.1161/hc0302.102609

    Article  CAS  PubMed  Google Scholar 

  35. Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673

    Google Scholar 

  36. Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340:115–126

    Google Scholar 

  37. Stoffels B, Yonezawa K, Yamamoto Y, Shaefer N, Overhaus M, Klinge U, Kalff JC, Minor T, Tolba RH (2011) Meloxicam, a COX-2 inhibitor, ameliorates ischemia/reperfusion injury in non-heart beating donor livers. Eur Sur Res 47:109–117. doi:10.1159/000329414

    Article  CAS  Google Scholar 

  38. Takeyoshi I, Sunose Y, Iwazaki S, Tsutsumi H, Aiba M, Kasahara M, Ohwada S, Matsumoto K, Morishita Y (2001) The effect of a selective cyclooxygenase-2 inhibitor in extended liver resection with ischemia in dogs. J Surg Res 100:25–31. doi:10.1006/jsre.2001.6211

    Article  CAS  PubMed  Google Scholar 

  39. Oshima K, Yabata Y, Yoshinari D, Takeyoshi I (2009) The effects of cyclooxygenase (COX)-2 inhibition on ischemia-reperfusion injury in liver transplantation. J Invest Surg 22:239–245, PIMD 19842898

    Google Scholar 

  40. Gupta YK, Chaudhary G, Sinha K (2002) Enhanced protection by melatonin and meloxicam combination in a middle cerebral artery occlusion model of acute ischemic stroke in rat. Can J Physiol Pharmacol. 80(3):210–7

    Google Scholar 

  41. Chu LM, Robich MP, Bianchi C, Feng J, Liu Y, Xu SH, Burgess T, Sellke FW (2012) Effects of cyclooxygenase inhibition on cardiovascular function in a hypercholesterolemic swine model of chronic ischemia. Am J Physiol Heart Circ Physiol 302(2):H479–H488. doi:10.1152/ajpheart.00146.2011

    Article  CAS  PubMed  Google Scholar 

  42. Shultz R, Nava E, Moncada S (1992) Induction and potential biological relevance of Ca2+-independent nitric oxide synthase in the myocardium. Br J Pharmacol 105:575–80, PMC1908438

    Google Scholar 

  43. Fu Y, Wang Z, Chen WL, Moore PK, Zhu YZ (2007) Cardioprotective effects of nitric oxide-aspirin in myocardial ischemia-reperfused rats. Am J Physiol Heart Circ Physiol 293:H1545–H1552. doi:10.1152/ajpheart.00064.2007

    Article  CAS  PubMed  Google Scholar 

  44. Farkouh ME, Greenberg BP (2009) An evidence-based review of the cardiovascular risks of nonsteroidal anti-inflammatory drugs. Am J Cardiol 103:1227–1237. doi:10.1016/j.amjcard.2009.01.014

    Article  CAS  PubMed  Google Scholar 

  45. Solomon SD, Wittes J, Finn PV et al (2008) Cardiovascular risk of celecoxib in 6 randomized placebo controlled trials: the cross trial safety analysis. Circulation 117:2104–2113. doi:10.1161/CIRCULATIONAHA.108.764530

    Article  CAS  PubMed  Google Scholar 

  46. Funk CD, FitzGerald GA (2007) COX-2 inhibitors and cardiovascular risk. J Cardiovasc Pharmacol 50:470–479. doi:10.1097/FJC.0b013e318157f72d

    Article  CAS  PubMed  Google Scholar 

  47. Sojitra B, Bulani Y, Putcha UK, Kanwal A, Gupta P, Kuncha M, Banerjee SK (2012) Nitric oxide synthase inhibition abrogates hydrogen sulfide-induced cardioprotection in mice. Mol Cell Biochem 360(1–2):61–69. doi:10.1007/s11010-011-1044-6

    Article  CAS  PubMed  Google Scholar 

  48. Kwiecien S, Konturek PC, Sliwowski Z, Mitis-Musiol M, Pawlik MW, Brzozowski B, Jasnos K, Magierowski M, Konturek SJ, Brzozowski (2012) Interaction between selective cyclooxygenase inhibitors and capsaicin-sensitive afferent sensory nerves in pathogenesis of stress-induced gastric lesions. Role of oxidative stress. J Physiol Pharmacol. 63(2):143–51

  49. Kwiecien S, Pawlik MW, Brzozowski T, Pawlik WW, Konturek SJ (2010) Reactive oxygen metabolite action in experimental, stress model of gastric mucosa damage. Gastroenterol Pol 17:234–243

    CAS  Google Scholar 

  50. Kwiecien S, Brzozowski T, Konturek SJ (2002) Effects of reactive oxygen species action on gastric mucosa in various models of mucosal injury. J Physiol Pharmacol 53:39–50

    Google Scholar 

  51. Kane MO, Etienne-Selloum N, Madeira SV, Sarr M, Walter A, Dal-Ros S, Schott C, Chataigneau T, Schini-Kerth VB (2010) Endothelium-derived contracting factors mediate the Ang II-induced endothelial dysfunction in the rat aorta: preventive effect of red wine polyphenols. Pflugers Arch 459(5):671–679. doi:10.1007/s00424-009-0759-7

    Article  CAS  PubMed  Google Scholar 

  52. Félétou M, Huang Y, Vanhoutte PM (2011) Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. Br J Pharmacol 164:894–912. doi:10.1111/j.1476-5381.2011.01276.x

    Article  PubMed  Google Scholar 

  53. Jakovljevic VLj, Kostic MM, Mujovic VM, Nedeljkovic TI, Đurić DM (1999) Interaction between l-arginine/NO system and cyclooxigenase metabolic product of arachidonic acid in coronary autoregulation. J Physiol Pharmacol 50:63–74

  54. Harder DR, Campbell Wb, Roman RJ (1995) Role of cytochrome P-450 enzymes and metabolites of arachidonic acid in the control of vascular tone. J Vasc Res 32:79–92

  55. Rees DD, Palmer RJ, Moncada S (1990) Nitric oxide in microcirculation. In: Moncada S, Higgs EA (eds) Nitric oxide from L-arginine: a bioregulatory system, Excerpta Medica, Amsterdam, pp 427–438

  56. Kostić MM, Schrader J (1992) Role of nitric oxide in reactive hyperemia of the guinea pig heart. Circ Res 70:208–212. doi:10.1161/01.RES.70.1.208

    Article  PubMed  Google Scholar 

  57. Kostić MM, Pertonijević MR, Jakovljević VLj (1996) Role of nitric oxide in the regulation of coronary circulation. Physiol Res 45:273–78

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Ministry of Science and Technical Development of the Republic of Serbia (Grant No. 175043) and Faculty of Medical Sciences, University of Kragujevac (Junior Project 04/2011). The authors are grateful for technical assistance of Mr. Predrag Ravic and Mr. Andreja Petrovic.

Conflict of interests

All authors of the present paper disclose no actual or potential conflict of interests including any financial, personal, or other relationships with other people or organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Lj. Jakovljevic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barudzic, N., Turjacanin-Pantelic, D., Zivkovic, V. et al. The effects of cyclooxygenase and nitric oxide synthase inhibition on oxidative stress in isolated rat heart. Mol Cell Biochem 381, 301–311 (2013). https://doi.org/10.1007/s11010-013-1712-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1712-9

Keywords

Navigation