Skip to main content
Log in

Bromocriptine modulates the expression of PTHrP receptor, Indian hedgehog, and Runx2 proteins in the growth plate of lactating rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In lactating rats, the endochondral bone growth is markedly enhanced, leading to the lengthening of long bone. This lactation-induced bone elongation could be abolished by a dopaminergic D2 receptor agonist bromocriptine, but how bromocriptine altered the expression of major chondroregulatory proteins in the growth plate cartilage was elusive. Here, we performed a quantitative immunohistochemical analysis to determine the expression of various peptides and transcription factors known to control the growth plate chondrocyte proliferation and differentiation [i.e., parathyroid hormone-related protein (PTHrP), PTHrP receptor, Indian hedgehog (Ihh), and runt-related transcription factor 2 (Runx2)], in bromocriptine-treated lactating rats. The results showed that bromocriptine markedly increased Ihh expression in hypertrophic chondrocytes during early and mid-lactation, while the expression of PTHrP receptor, but not its ligand PTHrP, was upregulated in the proliferative and hypertrophic zones during mid and late lactation. In contrast, the expression of Runx2, an important transcription factor for chondrocyte differentiation, was suppressed in the hypertrophic chondrocytes of bromocriptine-treated rats. In conclusion, bromocriptine increased Ihh and PTHrP receptor expressions and decreased Runx2 expression, which might, in turn, enhance chondrocyte proliferation and delay chondrocyte hypertrophy, thereby slowing down endochondral bone growth. This finding could explain how bromocriptine compromised the lactation-induced bone elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lieberman AN, Goldstein M (1985) Bromocriptine in Parkinson disease. Pharmacol Rev 37:217–227

    PubMed  CAS  Google Scholar 

  2. Bhattacharyya A, Basra SS, Sen P, Kar B (2012) Peripartum cardiomyopathy: a review. Tex Heart Inst J 39:8–16

    PubMed  Google Scholar 

  3. Crosignani PG (2006) Current treatment issues in female hyperprolactinaemia. Eur J Obstet Gynecol Reprod Biol 125:152–164

    Article  PubMed  CAS  Google Scholar 

  4. Suntornsaratoon P, Wongdee K, Goswami S, Krishnamra N, Charoenphandhu N (2010) Bone modeling in bromocriptine-treated pregnant and lactating rats: possible osteoregulatory role of prolactin in lactation. Am J Physiol Endocrinol Metab 299:E426–E436

    Article  PubMed  CAS  Google Scholar 

  5. Suntornsaratoon P, Wongdee K, Krishnamra N, Charoenphandhu N (2010) Possible chondroregulatory role of prolactin on the tibial growth plate of lactating rats. Histochem Cell Biol 134:483–491

    Article  PubMed  CAS  Google Scholar 

  6. Ab-Rahim S, Selvaratnam L, Raghavendran HR, Kamarul T (2013) Chondrocyte-alginate constructs with or without TGF-beta1 produces superior extracellular matrix expression than monolayer cultures. Mol Cell Biochem 376:11–20

    Article  PubMed  CAS  Google Scholar 

  7. Burdan F, Szumiło J, Korobowicz A, Farooquee R, Patel S, Patel A, Dave A, Szumiło M, Solecki M, Klepacz R, Dudka J (2009) Morphology and physiology of the epiphyseal growth plate. Folia Histochem Cytobiol 47:5–16

    Article  PubMed  Google Scholar 

  8. Kierszenbaum AL, Tres LL (2012) Osteogenesis. In: Kierszenbaum AL, Tres LL (eds) Histology and cell biology: an introduction to pathology, 3rd edn. Elsevier–Saunders, Philadelphia, pp 151–167

    Chapter  Google Scholar 

  9. Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol 40:46–62

    Article  PubMed  CAS  Google Scholar 

  10. Wongdee K, Krishnamra N, Charoenphandhu N (2012) Endochondral bone growth, bone calcium accretion, and bone mineral density: how are they related? J Physiol Sci 62:299–307

    Article  PubMed  CAS  Google Scholar 

  11. Kronenberg HM (2006) PTHrP and skeletal development. Ann N Y Acad Sci 1068:1–13

    Article  PubMed  CAS  Google Scholar 

  12. Wuelling M, Vortkamp A (2010) Transcriptional networks controlling chondrocyte proliferation and differentiation during endochondral ossification. Pediatr Nephrol 25:625–631

    Article  PubMed  Google Scholar 

  13. Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE (1996) Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc Natl Acad Sci USA 93:10240–10245

    Article  PubMed  CAS  Google Scholar 

  14. Guo J, Chung UI, Yang D, Karsenty G, Bringhurst FR, Kronenberg HM (2006) PTH/PTHrP receptor delays chondrocyte hypertrophy via both Runx2-dependent and -independent pathways. Dev Biol 292:116–128

    Article  PubMed  CAS  Google Scholar 

  15. Charoenphandhu N, Nakkrasae LI, Kraidith K, Teerapornpuntakit J, Thongchote K, Thongon N, Krishnamra N (2009) Two-step stimulation of intestinal Ca2+ absorption during lactation by long-term prolactin exposure and suckling-induced prolactin surge. Am J Physiol Endocrinol Metab 297:E609–E619

    Article  PubMed  CAS  Google Scholar 

  16. Wongdee K, Riengrojpitak S, Krishnamra N, Charoenphandhu N (2010) Claudin expression in the bone-lining cells of female rats exposed to long-standing acidemia. Exp Mol Pathol 88:305–310

    Article  PubMed  CAS  Google Scholar 

  17. Wongdee K, Teerapornpuntakit J, Siangpro C, Chaipai S, Charoenphandhu N (2013) Duodenal villous hypertrophy and upregulation of claudin-15 protein expression in lactating rats. J Mol Histol 44:103–109

    Article  PubMed  CAS  Google Scholar 

  18. Lehr HA, van der Loos CM, Teeling P, Gown AM (1999) Complete chromogen separation and analysis in double immunohistochemical stains using Photoshop-based image analysis. J Histochem Cytochem 47:119–126

    Article  PubMed  CAS  Google Scholar 

  19. Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, Ooi GT, Setser J, Frystyk J, Boisclair YR, LeRoith D (2002) Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest 110:771–781

    PubMed  CAS  Google Scholar 

  20. Yamashita S, Andoh M, Ueno-Kudoh H, Sato T, Miyaki S, Asahara H (2009) Sox9 directly promotes Bapx1 gene expression to repress Runx2 in chondrocytes. Exp Cell Res 315:2231–2240

    Article  PubMed  CAS  Google Scholar 

  21. Vignon E, Broquet P, Mathieu P, Louisot P, Richard M (1990) Histaminergic H1, serotoninergic, beta adrenergic and dopaminergic receptors in human osteoarthritic cartilage. Biochem Int 20:251–255

    PubMed  CAS  Google Scholar 

  22. Höglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7:726–735

    Article  PubMed  Google Scholar 

  23. Wasko R, Wolun-Cholewa M, Bolko P, Kotwicka M (2004) Effect of bromocriptine on cell apoptosis and proliferation in GH3 cell culture. Neuro Endocrinol Lett 25:223–228

    PubMed  CAS  Google Scholar 

  24. Zhang Y, Cincotta AH (1997) Inhibitory effects of bromocriptine on vascular smooth muscle cell proliferation. Atherosclerosis 133:37–44

    Article  PubMed  CAS  Google Scholar 

  25. Huseman CA, Hassing JM (1984) Evidence for dopaminergic stimulation of growth velocity in some hypopituitary children. J Clin Endocrinol Metab 58:419–425

    Article  PubMed  CAS  Google Scholar 

  26. Huseman CA (1985) Growth enhancement by dopaminergic therapy in children with intrauterine growth retardation. J Clin Endocrinol Metab 61:514–519

    Article  PubMed  CAS  Google Scholar 

  27. Huseman CA, Hassing JM, Sibilia MG (1986) Endogenous dopaminergic dysfunction: a novel form of human growth hormone deficiency and short stature. J Clin Endocrinol Metab 62:484–490

    Article  PubMed  CAS  Google Scholar 

  28. van der Eerden BC, Karperien M, Gevers EF, Löwik CW, Wit JM (2000) Expression of Indian hedgehog, parathyroid hormone-related protein, and their receptors in the postnatal growth plate of the rat: evidence for a locally acting growth restraining feedback loop after birth. J Bone Miner Res 15:1045–1055

    Article  PubMed  Google Scholar 

  29. van der Eerden BC, Karperien M, Wit JM (2003) Systemic and local regulation of the growth plate. Endocr Rev 24:782–801

    Article  PubMed  Google Scholar 

  30. Sanchez CP, He YZ (2007) Bone growth during daily or intermittent calcitriol treatment during renal failure with advanced secondary hyperparathyroidism. Kidney Int 72:582–591

    Article  PubMed  CAS  Google Scholar 

  31. Yoshida CA, Yamamoto H, Fujita T, Furuichi T, Ito K, Inoue K, Yamana K, Zanma A, Takada K, Ito Y, Komori T (2004) Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog. Genes Dev 18:952–963

    Article  PubMed  CAS  Google Scholar 

  32. Schipani E, Lanske B, Hunzelman J, Luz A, Kovacs CS, Lee K, Pirro A, Kronenberg HM, Jüppner H (1997) Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide. Proc Natl Acad Sci USA 94:13689–13694

    Article  PubMed  CAS  Google Scholar 

  33. Cheng A, Genever PG (2010) SOX9 determines RUNX2 transactivity by directing intracellular degradation. J Bone Miner Res 25:2680–2689

    Article  PubMed  Google Scholar 

  34. Li TF, Dong Y, Ionescu AM, Rosier RN, Zuscik MJ, Schwarz EM, O’Keefe RJ, Drissi H (2004) Parathyroid hormone-related peptide (PTHrP) inhibits Runx2 expression through the PKA signaling pathway. Exp Cell Res 299:128–136

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Panan Suntornsaratoon for the excellent technical assistance. This work was supported by grants from the Thailand Research Fund, the Office of the Higher Education Commission, and the Faculty of Allied Health Sciences, Burapha University (MRG5480230 to K. Wongdee), and the Discovery-based Development Grant, National Science and Technology Development Agency (P-10-11281 to N. Charoenphandhu).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narattaphol Charoenphandhu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2466 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wongdee, K., Thonapan, N., Saengamnart, W. et al. Bromocriptine modulates the expression of PTHrP receptor, Indian hedgehog, and Runx2 proteins in the growth plate of lactating rats. Mol Cell Biochem 381, 191–199 (2013). https://doi.org/10.1007/s11010-013-1702-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1702-y

Keywords

Navigation