Skip to main content

Advertisement

Log in

Evaluation of acetylcholinesterase and adenosine deaminase activities in brain and erythrocytes and proinflammatory cytokine levels in rats submitted to neonatal hypoxia-ischemia model

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Perinatal hypoxic-ischemic (HI) brain injury is a common problem with severe neurologic sequelae. The definitive brain injury is a consequence of pathophysiological mechanisms that begin at the moment of HI insult and may extend for days or weeks. In this context, the inflammatory response and the formation of reactive oxygen species seem to play a key role during evolution of brain damage after injury. Thus, the aim of this study was to describe the chronological sequence of acetylcholinesterase (AChE) activity and the lipid peroxidation changes in the cerebral cortex using the classic model of neonatal HI. Furthermore, the erythrocyte AChE and adenosine deaminase (ADA) activities as well as the serum levels of proinflammatory cytokines were assessed. We observed that neonatal HI caused an increase of lipid peroxidation immediately after HI insult, which remained for several days afterward. There was a time-related change in the AChE activity in the cerebral cortex and the same was observed in erythrocyte AChE and ADA activities. In addition, immediately after HI, ADA activity showed a strong positive correlation with all proinflammatory cytokines assessed. Together, these findings may help the understanding of some mechanism related to the pathophysiology of neonatal HI, therefore highlighting the putative therapeutic targets to minimize brain injury and enhance recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HI:

Hypoxia-ischemia

AChE:

Acetylcholinesterase

ACh:

Acetylcholine

ADA:

Adenosine deaminase

TBARS:

Thiobarbituric acid reactive species

TNF-α:

Tumor necrosis factor alpha

IFN-γ:

Interferon-gamma

IL:

Interleukins

BChE:

Butyrylcholinesterase

References

  1. Vannucci RC, Perlman JM (1997) Interventions for perinatal hypoxic-ischemic encephalopathy. Pediatrics 100:1004–1014

    Article  PubMed  CAS  Google Scholar 

  2. Ferriero DM (2004) Neonatal brain injury. N Engl J Med 351:1985–1995

    Article  PubMed  CAS  Google Scholar 

  3. Siesjö BK, Agardh CD, Bengtsson F (1989) Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1:165–211

    PubMed  Google Scholar 

  4. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    Article  PubMed  CAS  Google Scholar 

  5. Barone FC, Feuerstein GZ (1999) Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab 19:819–834

    Article  PubMed  CAS  Google Scholar 

  6. Pimentel VC, Bellé LP, Pinheiro FV, De Bona KS, Da Luz SC, Moretto MB (2009) Adenosine deaminase activity, lipid peroxidation and astrocyte responses in the cerebral cortex of rats after neonatal hypoxia ischemia. Int J Dev Neurosci 27:857–862

    Article  PubMed  CAS  Google Scholar 

  7. Pimentel VC, Pinheiro FV, De Bona KS, Maldonado PA, da Silva CR, de Oliveira SM, Ferreira J, Bertoncheli CM, Schetinger MR, Da Luz SC, Moretto MB (2011) Hypoxic-ischemic brain injury stimulates inflammatory response and enzymatic activities in the hippocampus of neonatal rats. Brain Res 1388:134–140

    Article  PubMed  CAS  Google Scholar 

  8. Grisaru D, Sternfeld M, Eldor A, Glick D, Soreq H (1999) Structural roles of acetylcholinesterase variants in biology and pathology. Eur J Biochem 264:672–686

    Article  PubMed  CAS  Google Scholar 

  9. Soreq H, Seidman S (2001) Acetylcholinesterase. New roles for an old actor. Nat Rev Neurosci 2:294–302

    Article  PubMed  CAS  Google Scholar 

  10. Mesulam MM, Guillozet A, Shaw P, Levey A, Duysen EG, Lockridge O (2002) Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 110:627–639

    Article  PubMed  CAS  Google Scholar 

  11. Paulus JM, Maigne J, Keyhani E (1981) Mouse megakaryocytes secrete acetylcholinesterase. Blood 58:1100–1106

    PubMed  CAS  Google Scholar 

  12. Falugi C, Balza E, Zardi L (1983) Localization of acetylcholinesterase in normal human fibroblasts and in a human fibrosarcoma cell line. Basic Appl Histochem 27:205–210

    PubMed  CAS  Google Scholar 

  13. Santos SC, Vala I, Miguel C, Barata JT, Garção P, Agostinho P, Mendes M, Coelho AV, Calado A, Oliveira CR, e Silva JM, Saldanha C (2007) Expression and subcellular localization of a novel nuclear acetylcholinesterase protein. J Biol Chem 282:25597–25603

    Google Scholar 

  14. Paleari L, Grozio A, Cesario A, Russo P (2008) The cholinergic system and cancer. Semin Cancer Biol 18:211–217

    Article  PubMed  CAS  Google Scholar 

  15. Schmatz R, Mazzanti CM, Spanevello R, Stefanello N, Gutierres J, Maldonado PA, Corrêa M, da Rosa CS, Becker L, Bagatini M, Gonçalves JF, Jaques Jdos S, Schetinger MR, Morsch VM (2009) Ectonucleotidase and acetylcholinesterase activities in synaptosomes from the cerebral cortex of streptozotocin-induced diabetic rats and treated with resveratrol. Brain Res Bull 80:371–376

    Article  PubMed  CAS  Google Scholar 

  16. Kaizer RR, Corrêa MC, Spanevello RM, Morsch VM, Mazzanti CM, Gonçalves JF, Schetinger MR (2005) Acetylcholinesterase activation and enhanced lipid peroxidation after long-term exposure to low levels of aluminum on different mouse brain regions. J Inorg Biochem 99:1865–1870

    Article  PubMed  CAS  Google Scholar 

  17. Gonçalves JF, Fiorenza AM, Spanevello RM, Mazzanti CM, Bochi GV, Antes FG, Stefanello N, Rubin MA, Dressler VL, Morsch VM, Schetinger MR (2010) N-acetylcysteine prevents memory deficits, the decrease in acetylcholinesterase activity and oxidative stress in rats exposed to cadmium. Chem Biol Interact 186:53–60

    Article  PubMed  Google Scholar 

  18. Kaizer RR, Gutierres JM, Schmatz R, Spanevello RM, Morsch VM, Schetinger MR, Rocha JB (2010) In vitro and in vivo interactions of aluminum on NTPDase and AChE activities in lymphocytes of rats. Cell Immunol 265:133–138

    Article  PubMed  CAS  Google Scholar 

  19. Sharoyan S, Antonyan A, Mardanyan S, Lupidi G, Cristalli G (2006) Influence of dipeptidyl peptidase IV on enzymatic properties of adenosine deaminase. Acta Biochim Pol 53:539–546

    PubMed  CAS  Google Scholar 

  20. Franco R, Pacheco R, Gatell JM, Gallart T, Lluis C (2007) Enzymatic and extraenzymatic role of adenosine deaminase 1 in T-cell-dendritic cell contacts and in alterations of the immune function. Crit Rev Immunol 27:495–509

    Article  PubMed  CAS  Google Scholar 

  21. Wilson DK, Rudolph FB, Quiocho FA (1991) Atomic structure of adenosine deaminase complexed with a transition-state analog: understanding catalysis and immunodeficiency mutations. Science 252:1278–1284

    Article  PubMed  CAS  Google Scholar 

  22. Zavialov AV, Gracia E, Glaichenhaus N, Franco R, Zavialov AV, Lauvau G (2010) Human adenosine deaminase 2 induces differentiation of monocytes into macrophages and stimulates proliferation of T helper cells and macrophages. J Leukoc Biol 88:279–290

    Article  PubMed  CAS  Google Scholar 

  23. Antonioli L, Fornai M, Colucci R, Ghisu N, Da Settimo F, Natale G, Kastsiuchenka O, Duranti E, Virdis A, Vassalle C, La Motta C, Mugnaini L, Breschi MC, Blandizzi C, Del Taca M (2007) Inhibition of adenosine deaminase attenuates inflammation in experimental colitis. J Pharmacol Exp Ther 322:435–442

    Article  PubMed  CAS  Google Scholar 

  24. Buckley RH, Schiff RI, Schiff SE, Markert ML, Williams LW, Harville TO, Roberts JL, Puck JM (1997) Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants. J Pediatr 130:378–387

    Article  PubMed  CAS  Google Scholar 

  25. Hussain W, Batool A, Ahmed TA, Bashir MM (2012) Severe combined immunodeficiency due to adenosine deaminase deficiency. J Pak Med Assoc 62:297–299

    PubMed  Google Scholar 

  26. Lafemina MJ, Sheldon RA, Ferriero DM (2006) Acute hypoxia-ischemia results in hydrogen peroxide accumulation in neonatal but not adult mouse brain. Pediatr Res 59:680–683

    Article  PubMed  CAS  Google Scholar 

  27. Silman I, Sussman JL (2005) Acetylcholinesterase: ‘classical’ and ‘non-classical’ functions and pharmacology. Curr Opin Pharmacol 5:293–302

    Article  PubMed  CAS  Google Scholar 

  28. Mazzanti CM, Spanevello RM, Pereira LB, Gonçalves JF, Kaizer R, Corrêa M, Ahmed M, Mazzanti A, Festugatto R, Graça DL, Morsch VM, Schetinger MR (2006) Acetylcholinesterase activity in rats experimentally demyelinated with ethidium bromide and treated with interferon beta. Neurochem Res 31:1027–1034

    Article  PubMed  CAS  Google Scholar 

  29. Pavlov VA, Parrish WR, Rosas-Ballina M, Ochani M, Puerta M, Ochani K, Chavan S, Al-Abed Y, Tracey KJ (2009) Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun 23:41–45

    Article  PubMed  CAS  Google Scholar 

  30. Gnatek Y, Zimmerman G, Goll Y, Najami N, Soreq H, Friedman A (2012) Acetylcholinesterase loosens the brain’s cholinergic anti-inflammatory response and promotes epileptogenesis. Front Mol Neurosci 5:66

    Article  PubMed  CAS  Google Scholar 

  31. Hudome S, Palmer C, Roberts RL, Mauger D, Housman C, Towfighi J (1997) The role of neutrophils in the production of hypoxic-ischemic brain injury in the neonatal rat. Pediatr Res 41:607–616

    Article  PubMed  CAS  Google Scholar 

  32. Barks JD, Liu YQ, Shangguan Y, Li J, Pfau J, Silverstein FS (2008) Impact of indolent inflammation on neonatal hypoxic-ischemic brain injury in mice. Int J Dev Neurosci 26:57–65

    Article  PubMed  CAS  Google Scholar 

  33. Vasiljević B, Maglajlić-Djukić S, Gojnić M, Stanković S (2012) The role of oxidative stress in perinatal hypoxic-ischemic brain injury. Srp Arh Celok Lek 140:35–41

    Article  PubMed  Google Scholar 

  34. Rice JE, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9:131–141

    Article  PubMed  Google Scholar 

  35. Moretto MB, de Mattos-Dutra A, Arteni N, Meirelles R, de Freitas MS, Netto CA, Pessoa-Pureur R (1999) Effects of neonatal cerebral hypoxia-ischemia on the in vitro phosphorylation of synapsin 1 in rat synaptosomes. Neurochem Res 24:1263–1269

    Article  PubMed  CAS  Google Scholar 

  36. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  37. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  PubMed  CAS  Google Scholar 

  38. Worek F, Mast U, Kiderlen D, Diepold C, Eyer P (1999) Improved determination of acetylcholinesterase activity in human whole blood. Clin Chim Acta 288:73–90

    Article  PubMed  CAS  Google Scholar 

  39. Guisti G, Galanti B (1984) Colorimetric method. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinheim

    Google Scholar 

  40. Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  41. Hossain MA (2008) Hypoxic-ischemic injury in neonatal brain: involvement of a novel neuronal molecule in neuronal cell death and potential target for neuroprotection. Int J Dev Neurosci 26:93–101

    Article  PubMed  CAS  Google Scholar 

  42. Vexler ZS, Ferriero DM (2001) Molecular and biochemical mechanisms of perinatal brain injury. Semin Neonatol 6:99–108

    Article  PubMed  CAS  Google Scholar 

  43. Meneguz A, Bisso GM, Michalek H (1992) Age-related changes in acetylcholinesterase and its molecular forms in various brain areas of rats. Neurochem Res 17:785–790

    Article  PubMed  CAS  Google Scholar 

  44. Skau KA, Triplett CG (1998) Age-related changes in activity of Fischer 344 rat brain acetylcholinesterase molecular forms. Mol Chem Neuropathol 35:13–21

    Article  PubMed  CAS  Google Scholar 

  45. Das A, Dikshit M, Nath C (2001) Profile of acetylcholinesterase in brain areas of male and female rats of adult and old age. Life Sci 68:1545–1555

    Article  PubMed  CAS  Google Scholar 

  46. Donat CK, Schuhmann MU, Voigt C, Nieber K, Schliebs R, Brust P (2007) Alterations of acetylcholinesterase activity after traumatic brain injury in rats. Brain Inj 21:1031–1037

    Article  PubMed  Google Scholar 

  47. Rauchová H, Vokurková M, Koudelová J (2012) Hypoxia-induced lipid peroxidation in the brain during postnatal ontogenesis. Physiol Res 61:89–101

    Google Scholar 

  48. Guéraud F, Atalay M, Bresgen N, Cipak A, Eckl PM, Huc L, Jouanin I, Siems W, Uchida K (2010) Chemistry and biochemistry of lipid peroxidation products. Free Radic Res 44:1098–1124

    Article  PubMed  Google Scholar 

  49. Schmidt-Kastner R, Freund TF (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40:599–636

    Article  PubMed  CAS  Google Scholar 

  50. Beley A, Bertrand N, Beley P (1991) Cerebral ischemia: changes in brain choline, acetylcholine, and other monoamines as related to energy metabolism. Neurochem Res 16:555–561

    Article  PubMed  CAS  Google Scholar 

  51. Pimentel VC, Pinheiro FV, Kaefer M, Moresco RN, Moretto MB (2011) Assessment of uric acid and lipid peroxidation in serum and urine after hypoxia-ischemia neonatal in rats. Neurol Sci 32:59–65

    Article  PubMed  CAS  Google Scholar 

  52. Ghaemi Oskouie F, Shameli A, Yang A, Desrosiers MD, Mucsi AD, Blackburn MR, Yang Y, Santamaria P, Shi Y (2011) High levels of adenosine deaminase on dendritic cells promote autoreactive T cell activation and diabetes in nonobese diabetic mice. J Immunol 186:6798–6806

    Article  PubMed  CAS  Google Scholar 

  53. Martinez-Navio JM, Casanova V, Pacheco R, Naval-Macabuhay I, Climent N, Garcia F, Gatell JM, Mallol J, Gallart T, Lluis C, Franco R (2011) Adenosine deaminase potentiates the generation of effector, memory, and regulatory CD4 + T cells. J Leukoc Biol 89:127–136

    Article  PubMed  CAS  Google Scholar 

  54. Chiesa C, Pellegrini G, Panero A, De Luca T, Assumma M, Signore F, Pacifico L (2003) Umbilical cord interleukin-6 levels are elevated in term neonates with perinatal asphyxia. Eur J Clin Invest 33:352–358

    Article  PubMed  CAS  Google Scholar 

  55. Aly H, Khashaba MT, El-Ayouty M, El-Sayed O, Hasanein BM (2006) IL-1beta, IL-6 and TNF-alpha and outcomes of neonatal hypoxic ischemic encephalopathy. Brain Dev 28:178–182

    Article  PubMed  Google Scholar 

  56. Boskabadi H, Maamouri G, Afshari JT, Ghayour-Mobarhan M, Shakeri MT (2010) Serum interleukin 8 level as a diagnostic marker in late neonatal sepsis. Iran J Pediatr 20:41–47

    PubMed  Google Scholar 

  57. Khalimbetov G (2012) Blood immunological parameters upon hypoxic-ischemic injuries of central nervous system in newborns and infants. Med Health Sci J 11:7–10

    Google Scholar 

  58. Bouma MG, van den Wildenberg FA, Buurman WA (1996) Adenosine inhibits cytokine release and expression of adhesion molecules by activated human endothelial cells. Am J Physiol 270(2 Pt 1):C522–C529

    PubMed  CAS  Google Scholar 

  59. Huang S, Apasov S, Koshiba M, Sitkovsky M (1997) Role of A2A extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 90:1600–1610

    PubMed  CAS  Google Scholar 

  60. Cordero OJ, Salgado FJ, Fernández-Alonso CM, Herrera C, Lluis C, Franco R, Nogueira M (2001) Cytokines regulate membrane adenosine deaminase on human activated lymphocytes. J Leukoc Biol 70:920–930

    PubMed  CAS  Google Scholar 

  61. Lappas CM, Rieger JM, Linden J (2005) A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4 + T cells. J Immunol 174:1073–1080

    PubMed  CAS  Google Scholar 

  62. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, Höpner S, Centonze D, Bernardi G, Dell’Acqua ML, Rossini PM, Battistini L, Rötzschke O, Falk K (2007) Expression of ectonucleotidase CD39 by Foxp3 + Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110:1225–1232

    Article  PubMed  CAS  Google Scholar 

  63. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265

    Article  PubMed  CAS  Google Scholar 

  64. Kuno M, Seki N, Tsujimoto S, Nakanishi I, Kinoshita T, Nakamura K, Terasaka T, Nishio N, Sato A, Fujii T (2006) Anti-inflammatory activity of non-nucleoside adenosine deaminase inhibitor FR234938. Eur J Pharmacol 534:241–249

    Article  PubMed  CAS  Google Scholar 

  65. Bell MD, Taub DD, Perry VH (1996) Overriding the brain’s intrinsic resistance to leukocyte recruitment with intraparenchymal injections of recombinant chemokines. Neuroscience 74:283–292

    Article  PubMed  CAS  Google Scholar 

  66. Ferrarese C, Mascarucci P, Zoia C, Cavarretta R, Frigo M, Begni B, Sarinella F, Frattola L, De Simoni MG (1999) Increased cytokine release from peripheral blood cells after acute stroke. J Cereb Blood Flow Metab 19:1004–1009

    Article  PubMed  CAS  Google Scholar 

  67. del Zoppo G, Ginis I, Hallenbeck JM, Iadecola C, Wang X, Feuerstein GZ (2000) Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia. Brain Pathol 10:95–112

    Article  PubMed  Google Scholar 

  68. Iadecola C, Alexander M (2001) Cerebral ischemia and inflammation. Curr Opin Neurol 14:89–94

    Article  PubMed  CAS  Google Scholar 

  69. Wright DL, Plummer DT (1973) Multiple forms of acetylcholinesterase from human erythrocytes. Biochem J 133:521–527

    PubMed  CAS  Google Scholar 

  70. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    Article  PubMed  CAS  Google Scholar 

  71. Parrish WR, Rosas-Ballina M, Gallowitsch-Puerta M, Ochani M, Ochani K, Yang LH, Hudson L, Lin X, Patel N, Johnson SM, Chavan S, Goldstein RS, Czura CJ, Miller EJ, Al-Abed Y, Tracey KJ, Pavlov VA (2008) Modulation of TNF release by choline requires alpha7 subunit nicotinic acetylcholine receptor-mediated signaling. Mol Med 14:567–574

    Article  PubMed  CAS  Google Scholar 

  72. Rosas-Ballina M, Tracey KJ (2009) Cholinergic control of inflammation. J Intern Med 265:663–679

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the INCT for Excitotoxicity and Neuroprotection, and the FINEP research grant “Rede Instituto Brasileiro de Neurociência (IBN-Net).”

Conflict of interest

The authors have declared that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Victor Camera Pimentel or Maria Rosa Chitolina Schetinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pimentel, V.C., Gomes, J.L., Zanini, D. et al. Evaluation of acetylcholinesterase and adenosine deaminase activities in brain and erythrocytes and proinflammatory cytokine levels in rats submitted to neonatal hypoxia-ischemia model. Mol Cell Biochem 378, 247–255 (2013). https://doi.org/10.1007/s11010-013-1615-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1615-9

Keywords

Navigation