Skip to main content

Advertisement

Log in

The molecular mechanism and potential role of heat shock-induced p53 protein accumulation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Workers who are exposed to extreme heat or work in hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational illnesses and injuries. On the other hand, local and regional heat therapy has been used for the treatment of some cancers, such as liver cancer, lung cancer, and kidney cancer. Although heat stress has been shown to induce the accumulation of p53 protein, a key regulator of cell cycle, apoptosis, DNA repair, and autophagy, how it regulates p53 protein accumulation and what the p53 targets are remain unclear. Here, we show that, among various genotoxic stresses, including ionizing radiation (IR) and ultraviolet (UV) radiation, heat stress contributes significantly to increase p53 protein levels in normal liver cells and liver cancer cells. Heat stress did not increase p53 mRNA expression as well as p53 promoter activity. However, heat stress enhanced the half-life of p53 protein. Moreover, heat stress increased the expression of puma and light chain 3 (LC-3), which are associated with the apoptotic and autophagic function of p53, respectively, whereas it did not change the expression of the cell cycle regulators p21, 14-3-3δ, and GADD45α, suggesting that heat-triggered alteration of p53 selectively modulates the downstream targets of p53. Our study provides a novel mechanism by which heat shock stimulates p53 protein accumulation, which is different from common DNA damages, such as IR and UV, and also provides new molecular basis for heat injuries or heat therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Curley SA, Izzo F, Delrio P, Ellis LM, Granchi J, Vallone P, Fiore F, Pignata S, Daniele B, Cremona F (1999) Radiofrequency ablation of unresectable primary and metastatic hepatic malignancies: results in 123 patients. Ann Surg 230:1–8

    Article  PubMed  CAS  Google Scholar 

  2. Zerbini A, Pilli M, Laccabue D, Pelosi G, Molinari A, Negri E, Cerioni S, Fagnoni F, Soliani P, Ferrari C (2010) Radiofrequency thermal ablation for hepatocellular carcinoma stimulates autologous NK-cell response. Gastroenterology 138:1931–1942

    Article  PubMed  CAS  Google Scholar 

  3. Poulou LS, Ziakas PD, Xila V, Vakrinos G, Malagari K, Syrigos KN, Thanos L (2009) Percutaneous radiofrequency ablation for unresectable colorectal liver metastases: time for shadows to disperse. Rev Recent Clin Trials 4:140–146

    Article  PubMed  Google Scholar 

  4. Lencioni R, Cioni D, Crocetti L, Franchini C, Pina CD, Lera J, Bartolozzi C (2005) Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. Radiology 234:961–967

    Article  PubMed  Google Scholar 

  5. Lees WR, Gillams A (2005) Radiofrequency ablation: other abdominal organs. Abdom Imaging 30:451–455

    Article  PubMed  CAS  Google Scholar 

  6. Varshney S, Sewkani A, Sharma S, Kapoor S, Naik S, Sharma A, Patel K (2006) Radiofrequency ablation of unresectable pancreatic carcinoma: feasibility, efficacy and safety. J Pancreas 7:74–78

    Google Scholar 

  7. McAchran SE, Lesani OA, Resnick MI (2005) Radiofrequency ablation of renal tumors: past, present, and future. Urology 66:15–22

    Article  PubMed  Google Scholar 

  8. Gervais DA, McGovern FJ, Arellano RS, McDougal WS, Mueller PR (2005) Radiofrequency ablation of renal cell carcinoma: part 1, Indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. Am J Roentgenol 185:64–71

    Article  Google Scholar 

  9. Dupuy DE, DiPetrillo T, Gandhi S, Ready N, Ng T, Donat W, Mayo-Smith WW (2006) Radiofrequency ablation followed by conventional radiotherapy for medically inoperable stage I non-small cell lung cancer. Chest 129:738–745

    Article  PubMed  Google Scholar 

  10. Solbiati L, Goldberg SN, Ierace T, Livraghi T, Meloni F, Dellanoce M, Sironi S, Gazelle GS (1997) Hepatic metastases: percutaneous radio-frequency ablation with cooled-tip electrodes. Radiology 205:367–373

    PubMed  CAS  Google Scholar 

  11. Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  PubMed  CAS  Google Scholar 

  12. Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410

    Article  PubMed  CAS  Google Scholar 

  13. Blagosklonny MV (2001) Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 93:239–240

    Article  PubMed  CAS  Google Scholar 

  14. Burns, El Deiry WS (1999) The p53 pathway and apoptosis. J Cell Physiol 181:231–239

    Google Scholar 

  15. Sionov RV, Haupt Y (1999) The cellular response to p53: the decision between life and death. Oncogene 18:6145–6157

    Article  PubMed  CAS  Google Scholar 

  16. Verschooten L, Declercq L, Garmyn M (2006) Adaptive response of the skin to UVB damage: role of the p53 protein. Int J Cosmet Sci 28:1–7

    Article  PubMed  CAS  Google Scholar 

  17. Sharma A, Meena AS, Bhat MK (2010) Hyperthermia-associated carboplatin resistance: differential role of p53, HSF1 and Hsp70 in hepatoma cells. Cancer Sci 101:1186–1193

    Article  PubMed  CAS  Google Scholar 

  18. Li Q, Zhao LY, Zheng Z, Yang H, Santiago A, Liao D (2011) Inhibition of p53 by adenovirus type 12 E1B–55K deregulates cell cycle control and sensitizes tumor cells to genotoxic agents. J Virol 85(16):7976–7988

    Article  PubMed  CAS  Google Scholar 

  19. Sun L, Zhang G, Li Z, Lei T, Huang C, Song T, Si L (2008) Cellular distribution of tumour suppressor protein p53 and high-risk human papillomavirus (HPV)-18 E6 fusion protein in wild-type p53 cell lines. J Int Med Res 36(5):1015–1021

    PubMed  CAS  Google Scholar 

  20. Zhang Z, Chen C, Wang G, Yang Z, San J, Zheng J, Li Q, Luo X, Hu Q, Li Z, Wang D (2011) Aberrant expression of the p53-inducible antiproliferative gene BTG2 in hepatocellular carcinoma is associated with overexpression of the cell cycle-related proteins. Cell Biochem Biophys 61(1):83–91

    Article  PubMed  CAS  Google Scholar 

  21. Ding LH, Wang ZY, Yan JH, Yang X, Liu AJ, Qiu WY, Zhu JH, Han JQ, Zhang H, Lin J (2009) Human four-and-a-half LIM family members suppress tumor cell growth through a TGF-β-like signaling pathway. J Clin Invest 119:349–361

    PubMed  CAS  Google Scholar 

  22. Bustin SA, Beaulieu JF, Huggett J, Jaggi R, Kibenge FS, Olsvik PA, Penning LC, Toegel S (2010) MIQE précis: practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol Biol 21(11):74

    Article  Google Scholar 

  23. Xu X, Fan Z, Kang L, Han J, Jiang C, Zheng X, Zhu Z, Jiao H, Lin J, Jiang K (2013) Hepatitis B virus X protein represses miRNA-148a to enhance tumorigenesis. J Clin Invest. doi:10.1172/JCI64265

  24. Cheng L, Li J, Han Y, Lin J, Niu C, Zhou Z, Yuan B, Huang K, Li J, Jiang K, Zhang H, Ding L, Xu X, Ye Q (2012) PES1 promotes breast cancer by differentially regulating ERα and ERβ. J Clin Invest 122:2857–2870

    Article  PubMed  CAS  Google Scholar 

  25. Wang Y, Gao W, Svitkin YV, Chen AP, Cheng YC (2010) DCB-3503, a tylophorine analog, inhibits protein synthesis through a novel mechanism. PLoS One 5(7):e11607

    Google Scholar 

  26. Scaffa PM, Vidal CM, Barros N, Gesteira TF, Carmona AK, Breschi L, Pashley DH, Tjäderhane L, Tersariol IL, Nascimento FD, Carrilho MR (2012) Chlorhexidine inhibits the activity of dental cysteine cathepsins. J Dent Res 4:420–425

    Google Scholar 

  27. Rashi-Elkeles S, Elkon R, Shavit S, Lerenthal Y, Linhart C, Kupershtein A, Amariglio N, Rechavi G, Shamir R, Shiloh Y (2011) Transcriptional modulation induced by ionizing radiation: p53 remains a central player. Mol Oncol 8:336–348

    Article  Google Scholar 

  28. Pustisek N, Situm M (2011) UV-radiation, apoptosis and skin. Coll Antropol 35(2):339–341

    PubMed  Google Scholar 

  29. Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20:1803–1815

    Article  PubMed  CAS  Google Scholar 

  30. Scherz-Shouval R, Weidberg H, Gonen C, Wilder S, Elazar Z, Oren M (2010) p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proc Natl Acad Sci USA 107(43):18511–18516

    Google Scholar 

  31. Qin LX, Tang ZY (2002) The prognostic significance of clinical and pathological features in hepatocellular carcinoma. World J Gastroenterol 8:193–199

    PubMed  Google Scholar 

  32. Nikfarjam M, Muralidharan V, Christophi C (2005) Mechanisms of focal heat destruction of liver tumors. J Surg Res 127:208–223

    Article  PubMed  Google Scholar 

  33. Burns TF, El-Deiry WS (1999) The p53 pathway and apoptosis. J Cell Physiol 181(2):231–239

    Article  PubMed  CAS  Google Scholar 

  34. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15

    Article  PubMed  CAS  Google Scholar 

  35. Zilfou JT, Lowe SW (2009) Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 1(5):a001883

    Article  PubMed  Google Scholar 

  36. Vilborg A, Wilhelm MT, Wiman KG (2010) Regulation of tumor suppressor p53 at the RNA level. J Mol Med 88:645–652

    Article  PubMed  CAS  Google Scholar 

  37. Raman V, Martensen SA, Reisman D, Evron E, Odenwald WF, Jaffee E, Marks J, Sukumar S (2000) Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 405:974–978

    Article  PubMed  CAS  Google Scholar 

  38. Liu H, Lu ZG, Miki Y, Yoshida K (2007) Protein Kinase C δ induces transcription of the TP53 tumor suppressor gene by controlling death-promoting factor Btf in the apoptotic response to DNA damage. Mol Cell Biol 27(24):8480–8491

    Article  PubMed  CAS  Google Scholar 

  39. Phan RT, Dalla-Favera R (2004) The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 432:635–639

    Article  PubMed  CAS  Google Scholar 

  40. Noda A, Toma-Aiba Y, Fujiwara Y (2000) A unique, short sequence determines p53 gene basal and UV-inducible expression in normal human cells. Oncogene 19:21–31

    Article  PubMed  CAS  Google Scholar 

  41. Sun X, Shimizu H, Yamamoto KI (1995) Identification of a novel p53 promoter element involved in genotoxic stress-inducible p53 gene expression. Mol Cell Biol 15(8):4489–4496

    PubMed  CAS  Google Scholar 

  42. Lynch CJ, Milner J (2006) Loss of one p53 allele results in fourfold reduction of p53 mRNA and protein: a basis for p53 haploinsufficiency. Oncogene 25:3463–3470

    Article  PubMed  CAS  Google Scholar 

  43. Shu KX, Li B, Wu LX (2007). The p53 network: p53 and its downstream genes. Colloids Surf B Biointerfaces 55(1):10–18

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation (31100604, 81101065, 30972594, and 81272913).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinong Ye.

Additional information

Juqiang Han, Xiaojie Xu, Hongzhen Qin, and Anheng Liu contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, J., Xu, X., Qin, H. et al. The molecular mechanism and potential role of heat shock-induced p53 protein accumulation. Mol Cell Biochem 378, 161–169 (2013). https://doi.org/10.1007/s11010-013-1607-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1607-9

Keywords

Navigation