Skip to main content

Advertisement

Log in

Nitric oxide attenuates matrix metalloproteinase-9 production by endothelial cells independent of cGMP- or NFκB-mediated mechanisms

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cardiovascular diseases involve critical mechanisms including impaired nitric oxide (NO) levels and abnormal matrix metalloproteinase (MMP) activity. While NO downregulates MMP expression in some cell types, no previous study has examined whether NO downregulates MMP levels in endothelial cells. We hypothesized that NO donors could attenuate MMP-9 production by human umbilical vein endothelial cells (HUVECs) as a result of less NFκB activation or cyclic GMP (cGMP)-mediated mechanisms. We studied the effects of DetaNONOate (10–400 μM) or SNAP (50–400 μM) on phorbol 12-myristate 13-acetate (PMA; 10 nM)-induced increases in MMP-9 activity (by gel zymography) or concentrations (by ELISA) as well as on a tissue inhibitor of MMPs’ (TIMP)-1 concentrations (by ELISA) in the conditioned medium of HUVECs incubated for 24 h with these drugs. We also examined whether the irreversible inhibitor of soluble guanylyl cyclase ODQ modified the effects of SNAP or whether 8-bromo-cGMP (a cell-permeable analog of cGMP) influenced PMA-induced effects on MMP-9 expression. Total and phospho-NFκB p65 concentrations were measured in HUVEC lysates to assess NFκB activation. Both NO donors attenuated PMA-induced increases in MMP-9 activity and concentrations without significantly affecting TIMP-1 concentrations. This effect was not modified by ODQ, and 8-bromo-cGMP did not affect MMP-9 concentrations. While PMA increased phospho-NFκB p65 concentrations, SNAP had no influence on this effect. In conclusion, this study shows that NO donors may attenuate imbalanced MMP expression and activity in endothelial cells independent of cGMP- or NFκB-mediated mechanisms. Our results may offer an important pharmacological strategy to approach cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moncada S, Higgs EA (2006) The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol 147(Suppl 1):S193–S201

    PubMed  CAS  Google Scholar 

  2. Castro MM, Kandasamy AD, Youssef N, Schulz R (2011) Matrix metalloproteinase inhibitor properties of tetracyclines: therapeutic potential in cardiovascular diseases. Pharmacol Res 64(6):551–560

    Article  PubMed  CAS  Google Scholar 

  3. Castro MM, Rizzi E, Ceron CS, Guimaraes DA, Rodrigues GJ, Bendhack LM, Gerlach RF, Tanus-Santos JE (2012) Doxycycline ameliorates 2K–1C hypertension-induced vascular dysfunction in rats by attenuating oxidative stress and improving nitric oxide bioavailability. Nitric Oxide 26(3):162–168

    Article  PubMed  CAS  Google Scholar 

  4. Castro MM, Rizzi E, Prado CM, Rossi MA, Tanus-Santos JE, Gerlach RF (2009) Imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases in hypertensive vascular remodeling. Matrix Biol 29(3):194–201

    Article  PubMed  Google Scholar 

  5. Demacq C, Metzger IF, Gerlach RF, Tanus-Santos JE (2008) Inverse relationship between markers of nitric oxide formation and plasma matrix metalloproteinase-9 levels in healthy volunteers. Clin Chim Acta 394(1–2):72–76

    Article  PubMed  CAS  Google Scholar 

  6. Metzger IF, Sandrim VC, Tanus-Santos JE (2012) Endogenous nitric oxide formation correlates negatively with circulating matrix metalloproteinase (MMP)-2 and MMP-9 levels in black subjects. Mol Cell Biochem 360(1–2):393–399

    Article  PubMed  CAS  Google Scholar 

  7. Eberhardt W, Beeg T, Beck KF, Walpen S, Gauer S, Bohles H, Pfeilschifter J (2000) Nitric oxide modulates expression of matrix metalloproteinase-9 in rat mesangial cells. Kidney Int 57(1):59–69

    Article  PubMed  CAS  Google Scholar 

  8. Eberhardt W, Huwiler A, Beck KF, Walpen S, Pfeilschifter J (2000) Amplification of IL-1 beta-induced matrix metalloproteinase-9 expression by superoxide in rat glomerular mesangial cells is mediated by increased activities of NF-kappa B and activating protein-1 and involves activation of the mitogen-activated protein kinase pathways. J Immunol 165(10):5788–5797

    PubMed  CAS  Google Scholar 

  9. Sinha I, Hannawa KK, Ailawadi G, Woodrum DT, Ford JW, Henke PK, Stanley JC, Eagleton MJ, Upchurch GR Jr (2006) The nitric oxide donor DETA-NONOate decreases matrix metalloproteinase-9 expression and activity in rat aortic smooth muscle and abdominal aortic explants. Ann Vasc Surg 20(1):92–98

    Article  PubMed  Google Scholar 

  10. Dey NB, Lincoln TM (2012) Possible involvement of Cyclic-GMP-dependent protein kinase on matrix metalloproteinase-2 expression in rat aortic smooth muscle cells. Mol Cell Biochem 368(1–2):27–35

    Article  PubMed  CAS  Google Scholar 

  11. Matthews JR, Botting CH, Panico M, Morris HR, Hay RT (1996) Inhibition of NF-kappaB DNA binding by nitric oxide. Nucleic Acids Res 24(12):2236–2242

    Article  PubMed  CAS  Google Scholar 

  12. Van der Heiden K, Cuhlmann S, le Luong A, Zakkar M, Evans PC (2010) Role of nuclear factor kappaB in cardiovascular health and disease. Clin Sci (Lond) 118(10):593–605

    Article  Google Scholar 

  13. Clark IM, Swingler TE, Sampieri CL, Edwards DR (2007) The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol 40(6–7):1362–1378

    PubMed  Google Scholar 

  14. Pfeilschifter J, Eberhardt W, Beck KF (2001) Regulation of gene expression by nitric oxide. Pflugers Arch 442(4):479–486

    Article  PubMed  CAS  Google Scholar 

  15. Goldberg GI, Strongin A, Collier IE, Genrich LT, Marmer BL (1992) Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J Biol Chem 267(7):4583–4591

    PubMed  CAS  Google Scholar 

  16. Izidoro-Toledo TC, Guimaraes DA, Belo VA, Gerlach RF, Tanus-Santos JE (2011) Effects of statins on matrix metalloproteinases and their endogenous inhibitors in human endothelial cells. Naunyn Schmiedebergs Arch Pharmacol 383(6):547–554

    Article  PubMed  CAS  Google Scholar 

  17. Liu HT, Li WM, Xu G, Li XY, Bai XF, Wei P, Yu C, Du YG (2009) Chitosan oligosaccharides attenuate hydrogen peroxide-induced stress injury in human umbilical vein endothelial cells. Pharmacol Res 59(3):167–175

    Article  PubMed  CAS  Google Scholar 

  18. Gerlach RF, Demacq C, Jung K, Tanus-Santos JE (2007) Rapid separation of serum does not avoid artificially higher matrix metalloproteinase (MMP)-9 levels in serum versus plasma. Clin Biochem 40(1–2):119–123

    Article  PubMed  CAS  Google Scholar 

  19. Gerlach RF, Uzuelli JA, Souza-Tarla CD, Tanus-Santos JE (2005) Effect of anticoagulants on the determination of plasma matrix metalloproteinase (MMP)-2 and MMP-9 activities. Anal Biochem 344(1):147–149

    Article  PubMed  CAS  Google Scholar 

  20. Souza-Tarla CD, Uzuelli JA, Machado AA, Gerlach RF, Tanus-Santos JE (2005) Methodological issues affecting the determination of plasma matrix metalloproteinase (MMP)-2 and MMP-9 activities. Clin Biochem 38(5):410–414

    Article  PubMed  CAS  Google Scholar 

  21. Marcaccini AM, Meschiari CA, Zuardi LR, de Sousa TS, Taba M Jr, Teofilo JM, Jacob-Ferreira AL, Tanus-Santos JE, Novaes AB Jr, Gerlach RF (2010) Gingival crevicular fluid levels of MMP-8, MMP-9, TIMP-2, and MPO decrease after periodontal therapy. J Clin Periodontol 37(2):180–190

    Article  PubMed  CAS  Google Scholar 

  22. Hah N, Lee ST (2003) An absolute role of the PKC-dependent NF-kappaB activation for induction of MMP-9 in hepatocellular carcinoma cells. Biochem Biophys Res Commun 305(2):428–433

    Article  PubMed  CAS  Google Scholar 

  23. Massaro M, Zampolli A, Scoditti E, Carluccio MA, Storelli C, Distante A, De Caterina R (2010) Statins inhibit cyclooxygenase-2 and matrix metalloproteinase-9 in human endothelial cells: anti-angiogenic actions possibly contributing to plaque stability. Cardiovasc Res 86(2):311–320

    Article  PubMed  CAS  Google Scholar 

  24. Braam B, de Roos R, Dijk A, Boer P, Post JA, Kemmeren PP, Holstege FC, Bluysen HA, Koomans HA (2004) Nitric oxide donor induces temporal and dose-dependent reduction of gene expression in human endothelial cells. Am J Physiol Heart Circ Physiol 287(5):H1977–H1986

    Article  PubMed  CAS  Google Scholar 

  25. Schankin CJ, Kruse LS, Reinisch VM, Jungmann S, Kristensen JC, Grau S, Ferrari U, Sinicina I, Goldbrunner R, Straube A, Kruuse C (2010) Nitric oxide-induced changes in endothelial expression of phosphodiesterases 2, 3, and 5. Headache 50(3):431–441

    Article  PubMed  Google Scholar 

  26. Waldow T, Witt W, Weber E, Matschke K (2006) Nitric oxide donor-induced persistent inhibition of cell adhesion protein expression and NFkappaB activation in endothelial cells. Nitric Oxide 15(2):103–113

    Article  PubMed  CAS  Google Scholar 

  27. Munoz G, San Martin R, Farias M, Cea L, Vecchiola A, Casanello P, Sobrevia L (2006) Insulin restores glucose inhibition of adenosine transport by increasing the expression and activity of the equilibrative nucleoside transporter 2 in human umbilical vein endothelium. J Cell Physiol 209(3):826–835

    Article  PubMed  CAS  Google Scholar 

  28. Sparkman L, Boggaram V (2004) Nitric oxide increases IL-8 gene transcription and mRNA stability to enhance IL-8 gene expression in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 287(4):L764–L773

    Article  PubMed  CAS  Google Scholar 

  29. Lee H, Lin CI, Liao JJ, Lee YW, Yang HY, Lee CY, Hsu HY, Wu HL (2004) Lysophospholipids increase ICAM-1 expression in HUVEC through a Gi- and NF-kappaB-dependent mechanism. Am J Physiol Cell Physiol 287(6):C1657–C1666

    Article  PubMed  CAS  Google Scholar 

  30. Galis ZS, Khatri JJ (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 90(3):251–262

    PubMed  CAS  Google Scholar 

  31. Marson BP, Poli de Figueiredo CE, Tanus-Santos JE (2012) Imbalanced matrix metalloproteinases in cardiovascular complications of end-stage kidney disease: a potential pharmacological target. Basic Clin Pharmacol Toxicol 110(5):409–415

    Article  PubMed  CAS  Google Scholar 

  32. Fontana V, Silva PS, Gerlach RF, Tanus-Santos JE (2012) Circulating matrix metalloproteinases and their inhibitors in hypertension. Clin Chim Acta 413(7–8):656–662

    Article  PubMed  CAS  Google Scholar 

  33. Szmitko PE, Wang CH, Weisel RD, Jeffries GA, Anderson TJ, Verma S (2003) Biomarkers of vascular disease linking inflammation to endothelial activation: Part II. Circulation 108(17):2041–2048

    Article  PubMed  Google Scholar 

  34. Newby AC (2008) Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler Thromb Vasc Biol 28(12):2108–2114

    Article  PubMed  CAS  Google Scholar 

  35. Newby AC (2012) Matrix metalloproteinase inhibition therapy for vascular diseases. Vascul Pharmacol 56(5–6):232–244

    Article  PubMed  CAS  Google Scholar 

  36. Fontana V, Silva PS, Belo VA, Antonio RC, Ceron CS, Biagi C, Gerlach RF, Tanus-Santos JE (2011) Consistent alterations of circulating matrix metalloproteinases levels in untreated hypertensives and in spontaneously hypertensive rats: a relevant pharmacological target. Basic Clin Pharmacol Toxicol 109(2):130–137

    Article  PubMed  CAS  Google Scholar 

  37. Belo VA, Souza-Costa DC, Lana CM, Caputo FL, Marcaccini AM, Gerlach RF, Bastos MG, Tanus-Santos JE (2009) Assessment of matrix metalloproteinase (MMP)-2, MMP-8, MMP-9, and their inhibitors, the tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in obese children and adolescents. Clin Biochem 42(10–11):984–990

    Article  PubMed  CAS  Google Scholar 

  38. Palei AC, Sandrim VC, Cavalli RC, Tanus-Santos JE (2008) Comparative assessment of matrix metalloproteinase (MMP)-2 and MMP-9, and their inhibitors, tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in preeclampsia and gestational hypertension. Clin Biochem 41(10–11):875–880

    Article  PubMed  CAS  Google Scholar 

  39. Phillips PG, Birnby LM, Narendran A, Milonovich WL (2001) Nitric oxide modulates capillary formation at the endothelial cell-tumor cell interface. Am J Physiol Lung Cell Mol Physiol 281(1):L278–L290

    PubMed  CAS  Google Scholar 

  40. Gurjar MV, DeLeon J, Sharma RV, Bhalla RC (2001) Mechanism of inhibition of matrix metalloproteinase-9 induction by NO in vascular smooth muscle cells. J Appl Physiol 91(3):1380–1386

    PubMed  CAS  Google Scholar 

  41. Souza-Costa DC, Zerbini T, Palei AC, Gerlach RF, Tanus-Santos JE (2005) l-arginine attenuates acute pulmonary embolism-induced increases in lung matrix metalloproteinase-2 and matrix metalloproteinase-9. Chest 128(5):3705–3710

    Article  PubMed  CAS  Google Scholar 

  42. Neto-Neves EM, Dias-Junior CA, Uzuelli JA, Pereira RP, Spiller F, Czaikoski PG, Tanus-Santos JE (2011) Sildenafil improves the beneficial hemodynamic effects exerted by atorvastatin during acute pulmonary thromboembolism. Eur J Pharmacol 670(2–3):554–560

    Article  PubMed  CAS  Google Scholar 

  43. Dias-Junior CA, Cau SB, Oliveira AM, Castro MM, Montenegro MF, Gerlach RF, Tanus-Santos JE (2009) Nitrite or sildenafil, but not BAY 41-2272, blunt acute pulmonary embolism-induced increases in circulating matrix metalloproteinase-9 and oxidative stress. Thromb Res 124(3):349–355

    Article  PubMed  CAS  Google Scholar 

  44. Pilz RB, Casteel DE (2003) Regulation of gene expression by cyclic GMP. Circ Res 93(11):1034–1046

    Article  PubMed  CAS  Google Scholar 

  45. He C (1996) Molecular mechanism of transcriptional activation of human gelatinase B by proximal promoter. Cancer Lett 106(2):185–191

    Article  PubMed  CAS  Google Scholar 

  46. Castier Y, Ramkhelawon B, Riou S, Tedgui A, Lehoux S (2009) Role of NF-kappaB in flow-induced vascular remodeling. Antioxid Redox Signal 11(7):1641–1649

    Article  PubMed  CAS  Google Scholar 

  47. Cau S, Guimaraes D, Rizzi E, Ceron C, Souza L, Tirapelli C, Gerlach R, Tanus-Santos J (2011) Pyrrolidine dithiocarbamate downregulates vascular matrix metalloproteinases and ameliorates vascular dysfunction and remodeling in renovascular hypertension. Br J Pharmacol 164(2):372–381

    Article  PubMed  CAS  Google Scholar 

  48. de Winther MP, Kanters E, Kraal G, Hofker MH (2005) Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 25(5):904–914

    Article  PubMed  Google Scholar 

  49. Eberhardt W, el Akool S, Rebhan J, Frank S, Beck KF, Franzen R, Hamada FM, Pfeilschifter J (2002) Inhibition of cytokine-induced matrix metalloproteinase 9 expression by peroxisome proliferator-activated receptor alpha agonists is indirect and due to a NO-mediated reduction of mRNA stability. J Biol Chem 277(36):33518–33528

    Article  PubMed  CAS  Google Scholar 

  50. el Akool S, Kleinert H, Hamada FM, Abdelwahab MH, Forstermann U, Pfeilschifter J, Eberhardt W (2003) Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. Mol Cell Biol 23(14):4901–4916

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Fundação de Aparo a Pesquisa do Estado de São Paulo (FAPESP-Brazil) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose E. Tanus-Santos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 272 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meschiari, C.A., Izidoro-Toledo, T., Gerlach, R.F. et al. Nitric oxide attenuates matrix metalloproteinase-9 production by endothelial cells independent of cGMP- or NFκB-mediated mechanisms. Mol Cell Biochem 378, 127–135 (2013). https://doi.org/10.1007/s11010-013-1602-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1602-1

Keywords

Navigation