Skip to main content

Advertisement

Log in

The Phosphodiesterase-5 Inhibitor Vardenafil Improves the Activation of BMP Signaling in Response to Hydrogen Peroxide

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

The pleiotropic roles of phosphodiesterase-5 inhibitors (PDE5is) in cardiovascular diseases have attracted attention. The effect of vardenafil (a PDE5i) is partly mediated through reduced oxidative stress, but it is unclear whether vardenafil protects against hydrogen peroxide (H2O2)-induced endothelial cell injury, and the molecular mechanisms that are involved remain unknown. We determined the protective role of vardenafil on H2O2-induced endothelial cell injury in cultured human umbilical vein endothelial cells (HUVECs).

Methods and Results

Vardenafil decreased the number of TUNEL-positive cells, increased the Bcl2/Bax ratio, and ameliorated the numbers of BrdU-positive cells in H2O2-treated HUVECs. The bone morphogenetic protein receptor (BMPR)/p-Smad/MSX2 pathway was enhanced in response to H2O2, and vardenafil treatment could normalize this pathway. To determine whether the BMP pathway is involved, we blocked the BMP pathway using dorsomorphin, which abolished the protective effects of vardenafil. We found that vardenafil improved the H2O2-induced downregulation of BMP-binding endothelial regulator protein (BMPER), which possibly intersects with the BMP pathway in the regulation of endothelial cell injury in response to oxidative stress.

Conclusions

We demonstrated for the first time that exogenous H2O2 activates BMPR expression and promotes Smad1/5/8 phosphorylation. Additionally, vardenafil can attenuate H2O2-induced endothelial cell injury in HUVECs. Vardenafil decreases apoptosis through an improved Bcl-2/Bax ratio and increases cell proliferation. Vardenafil protects against endothelial cell injury through ameliorating the intracellular oxidative stress level and BMPER expression. The protective role of vardenafil on H2O2-induced endothelial cell injury is mediated through BMPR/p-Smad/MSX2 in HUVECs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109(23 Suppl 1):III27–32. https://doi.org/10.1161/01.CIR.0000131515.03336.f8.

    Article  CAS  PubMed  Google Scholar 

  2. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87(10):840–4.

    Article  CAS  Google Scholar 

  3. Simoes Sato AY, Bub GL, Campos AH. BMP-2 and -4 produced by vascular smooth muscle cells from atherosclerotic lesions induce monocyte chemotaxis through direct BMPRII activation. Atherosclerosis. 2014;235(1):45–55. https://doi.org/10.1016/j.atherosclerosis.2014.03.030.

    Article  CAS  PubMed  Google Scholar 

  4. Chinnappan M, Mohan A, Agarwal S, Dalvi P, Dhillon NK. Network of microRNAs mediate translational repression of bone morphogenetic protein receptor-2: involvement in HIV-associated pulmonary vascular remodeling. J Am Heart Assoc. 2018;7(5). https://doi.org/10.1161/JAHA.117.008472.

  5. Zhu D, Mackenzie NC, Shanahan CM, Shroff RC, Farquharson C, MacRae VE. BMP-9 regulates the osteoblastic differentiation and calcification of vascular smooth muscle cells through an ALK1 mediated pathway. J Cell Mol Med. 2015;19(1):165–74. https://doi.org/10.1111/jcmm.12373.

    Article  CAS  PubMed  Google Scholar 

  6. David L, Mallet C, Keramidas M, Lamande N, Gasc JM, Dupuis-Girod S, et al. Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res. 2008;102(8):914–22. https://doi.org/10.1161/CIRCRESAHA.107.165530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hwangbo C, Lee HW, Kang H, Ju H, Wiley DS, Papangeli I, et al. Modulation of endothelial bone morphogenetic protein receptor type 2 activity by vascular endothelial growth factor receptor 3 in pulmonary arterial hypertension. Circulation. 2017;135(23):2288–98. https://doi.org/10.1161/CIRCULATIONAHA.116.025390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wooderchak-Donahue WL, McDonald J, O'Fallon B, Upton PD, Li W, Roman BL, et al. BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am J Hum Genet. 2013;93(3):530–7. https://doi.org/10.1016/j.ajhg.2013.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xia WH, Chen L, Liang JW, Zhang XY, Su C, Tong X, et al. BMP4/Id2 signaling pathway is a novel therapeutic target for late outgrowth endothelial progenitor cell-mediated endothelial injury repair. Int J Cardiol. 2017;228:796–804. https://doi.org/10.1016/j.ijcard.2016.11.027.

    Article  PubMed  Google Scholar 

  10. Derwall M, Malhotra R, Lai CS, Beppu Y, Aikawa E, Seehra JS, et al. Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32(3):613–22. https://doi.org/10.1161/ATVBAHA.111.242594.

    Article  CAS  PubMed  Google Scholar 

  11. Heinke J, Wehofsits L, Zhou Q, Zoeller C, Baar KM, Helbing T, et al. BMPER is an endothelial cell regulator and controls bone morphogenetic protein-4-dependent angiogenesis. Circ Res. 2008;103(8):804–12. https://doi.org/10.1161/CIRCRESAHA.108.178434.

    Article  CAS  PubMed  Google Scholar 

  12. Helbing T, Wiltgen G, Hornstein A, Brauers EZ, Arnold L, Bauer A, et al. Bone morphogenetic protein-modulator BMPER regulates endothelial barrier function. Inflammation. 2017;40(2):442–53. https://doi.org/10.1007/s10753-016-0490-4.

    Article  CAS  PubMed  Google Scholar 

  13. De Vecchis R, Cesaro A, Ariano C, Giasi A, Cioppa C. Phosphodiesterase-5 inhibitors improve clinical outcomes, exercise capacity and pulmonary hemodynamics in patients with heart failure with reduced left ventricular ejection fraction: a meta-analysis. J Clin Med Res. 2017;9(6):488–98. https://doi.org/10.14740/jocmr3008w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Giuliano F, Oelke M, Jungwirth A, Hatzimouratidis K, Watts S, Cox D, et al. Tadalafil once daily improves ejaculatory function, erectile function, and sexual satisfaction in men with lower urinary tract symptoms suggestive of benign prostatic hyperplasia and erectile dysfunction: results from a randomized, placebo- and tamsulosin-controlled, 12-week double-blind study. J Sex Med. 2013;10(3):857–65. https://doi.org/10.1111/jsm.12039.

    Article  CAS  PubMed  Google Scholar 

  15. Corbin JD, Beasley A, Blount MA, Francis SH. Vardenafil: structural basis for higher potency over sildenafil in inhibiting cGMP-specific phosphodiesterase-5 (PDE5). Neurochem Int. 2004;45(6):859–63. https://doi.org/10.1016/j.neuint.2004.03.016.

    Article  CAS  PubMed  Google Scholar 

  16. Ried M, Neu R, Lehle K, Grosser C, Szoke T, Lang G, et al. Superior vasodilation of human pulmonary vessels by vardenafil compared with tadalafil and sildenafil: additive effects of bosentan. Interact Cardiovasc Thorac Surg. 2017;25(2):254–9. https://doi.org/10.1093/icvts/ivx108.

    Article  PubMed  Google Scholar 

  17. Veres G, Hagenhoff M, Schmidt H, Radovits T, Loganathan S, Bai Y, et al. Targeting Phosphodiesterase-5 by vardenafil improves vascular graft function. Eur J Vasc Endovasc Surg. 2018;56(2):256–63. https://doi.org/10.1016/j.ejvs.2018.03.025.

    Article  PubMed  Google Scholar 

  18. Salloum FN, Ockaili RA, Wittkamp M, Marwaha VR, Kukreja RC. Vardenafil: a novel type 5 phosphodiesterase inhibitor reduces myocardial infarct size following ischemia/reperfusion injury via opening of mitochondrial K(ATP) channels in rabbits. J Mol Cell Cardiol. 2006;40(3):405–11. https://doi.org/10.1016/j.yjmcc.2005.10.002.

    Article  CAS  PubMed  Google Scholar 

  19. Matyas C, Nemeth BT, Olah A, Torok M, Ruppert M, Kellermayer D, et al. Prevention of the development of heart failure with preserved ejection fraction by the phosphodiesterase-5A inhibitor vardenafil in rats with type 2 diabetes. Eur J Heart Fail. 2017;19(3):326–36. https://doi.org/10.1002/ejhf.711.

    Article  CAS  PubMed  Google Scholar 

  20. Korkmaz S, Radovits T, Barnucz E, Neugebauer P, Arif R, Hirschberg K, et al. Dose-dependent effects of a selective phosphodiesterase-5-inhibitor on endothelial dysfunction induced by peroxynitrite in rat aorta. Eur J Pharmacol. 2009;615(1–3):155–62. https://doi.org/10.1016/j.ejphar.2009.05.020.

    Article  CAS  PubMed  Google Scholar 

  21. Behr-Roussel D, Oudot A, Caisey S, Coz OL, Gorny D, Bernabe J, et al. Daily treatment with sildenafil reverses endothelial dysfunction and oxidative stress in an animal model of insulin resistance. Eur Urol. 2008;53(6):1272–80. https://doi.org/10.1016/j.eururo.2007.11.018.

    Article  CAS  PubMed  Google Scholar 

  22. Fan YF, Zhang R, Jiang X, Wen L, Wu DC, Liu D, et al. The phosphodiesterase-5 inhibitor vardenafil reduces oxidative stress while reversing pulmonary arterial hypertension. Cardiovasc Res. 2013;99(3):395–403. https://doi.org/10.1093/cvr/cvt109.

    Article  CAS  PubMed  Google Scholar 

  23. Semen K, Yelisyeyeva O, Jarocka-Karpowicz I, Kaminskyy D, Solovey L, Skrzydlewska E, et al. Sildenafil reduces signs of oxidative stress in pulmonary arterial hypertension: evaluation by fatty acid composition, level of hydroxynonenal and heart rate variability. Redox Biol. 2016;7:48–57. https://doi.org/10.1016/j.redox.2015.11.009.

    Article  CAS  PubMed  Google Scholar 

  24. Guan Q, Liu W, Liu Y, Fan Y, Wang X, Yu C, et al. High glucose induces the release of endothelin-1 through the inhibition of hydrogen sulfide production in HUVECs. Int J Mol Med. 2015;35(3):810–4. https://doi.org/10.3892/ijmm.2014.2059.

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med. 1999;27(5–6):612–6.

    Article  CAS  Google Scholar 

  26. Montorsi F, Corbin J, Phillips S. Review of phosphodiesterases in the urogenital system: new directions for therapeutic intervention. J Sex Med. 2004;1(3):322–36. https://doi.org/10.1111/j.1743-6109.04047.x.

    Article  CAS  PubMed  Google Scholar 

  27. Jing ZC, Yu ZX, Shen JY, Wu BX, Xu KF, Zhu XY, et al. Vardenafil in pulmonary arterial hypertension: a randomized, double-blind, placebo-controlled study. Am J Respir Crit Care Med. 2011;183(12):1723–9. https://doi.org/10.1164/rccm.201101-0093OC.

    Article  CAS  PubMed  Google Scholar 

  28. George EM, Palei AC, Dent EA, Granger JP. Sildenafil attenuates placental ischemia-induced hypertension. Am J Phys Regul Integr Comp Phys. 2013;305(4):R397–403. https://doi.org/10.1152/ajpregu.00216.2013.

    Article  CAS  Google Scholar 

  29. Dias AT, Cintra AS, Frossard JC, Palomino Z, Casarini DE, Gomes IB, et al. Inhibition of phosphodiesterase 5 restores endothelial function in renovascular hypertension. J Transl Med. 2014;12:250. https://doi.org/10.1186/s12967-014-0250-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McLaughlin K, Lytvyn Y, Luca MC, Liuni A, Gori T, Parker JD. Repeated daily dosing with sildenafil provides sustained protection from endothelial dysfunction caused by ischemia and reperfusion: a human in vivo study. Am J Physiol Heart Circ Physiol. 2014;307(6):H888–94. https://doi.org/10.1152/ajpheart.00215.2014.

    Article  CAS  PubMed  Google Scholar 

  31. El-Sayed MI, Amin HA. Mechanism of endothelial cyto-protective and thrombo-resistance effects of sildenafil, vardenafil and tadalafil in male rabbit. Arch Med Sci. 2015;11(1):190–8. https://doi.org/10.5114/aoms.2013.33616.

    Article  CAS  PubMed  Google Scholar 

  32. Giannattasio S, Corinaldesi C, Colletti M, Di Luigi L, Antinozzi C, Filardi T, et al. The phosphodiesterase 5 inhibitor sildenafil decreases the proinflammatory chemokine IL-8 in diabetic cardiomyopathy: in vivo and in vitro evidence. J Endocrinol Investig. 2019;42(6):715–25. https://doi.org/10.1007/s40618-018-0977-y.

    Article  CAS  Google Scholar 

  33. Di Luigi L, Corinaldesi C, Colletti M, Scolletta S, Antinozzi C, Vannelli GB, et al. Phosphodiesterase type 5 inhibitor sildenafil decreases the proinflammatory chemokine CXCL10 in human cardiomyocytes and in subjects with diabetic cardiomyopathy. Inflammation. 2016;39(3):1238–52. https://doi.org/10.1007/s10753-016-0359-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Corinaldesi C, Di Luigi L, Lenzi A, Crescioli C. Phosphodiesterase type 5 inhibitors: back and forward from cardiac indications. J Endocrinol Investig. 2016;39(2):143–51. https://doi.org/10.1007/s40618-015-0340-5.

    Article  CAS  Google Scholar 

  35. Peixoto CA, Nunes AK, Garcia-Osta A. Phosphodiesterase-5 inhibitors: action on the signaling pathways of neuroinflammation, neurodegeneration, and cognition. Mediat Inflamm. 2015;2015:940207. https://doi.org/10.1155/2015/940207.

    Article  CAS  Google Scholar 

  36. Santi D, Giannetta E, Isidori AM, Vitale C, Aversa A, Simoni M. Therapy of endocrine disease. Effects of chronic use of phosphodiesterase inhibitors on endothelial markers in type 2 diabetes mellitus: a meta-analysis. Eur J Endocrinol. 2015;172(3):R103–14. https://doi.org/10.1530/EJE-14-0700.

    Article  CAS  PubMed  Google Scholar 

  37. Dalfino G, Simone S, Porreca S, Cosola C, Balestra C, Manno C, et al. Bone morphogenetic protein-2 may represent the molecular link between oxidative stress and vascular stiffness in chronic kidney disease. Atherosclerosis. 2010;211(2):418–23. https://doi.org/10.1016/j.atherosclerosis.2010.04.023.

    Article  CAS  PubMed  Google Scholar 

  38. Wong WT, Tian XY, Chen Y, Leung FP, Liu L, Lee HK, et al. Bone morphogenic protein-4 impairs endothelial function through oxidative stress-dependent cyclooxygenase-2 upregulation: implications on hypertension. Circ Res. 2010;107(8):984–91. https://doi.org/10.1161/CIRCRESAHA.110.222794.

    Article  CAS  PubMed  Google Scholar 

  39. Tian XY, Yung LH, Wong WT, Liu J, Leung FP, Liu L, et al. Bone morphogenic protein-4 induces endothelial cell apoptosis through oxidative stress-dependent p38MAPK and JNK pathway. J Mol Cell Cardiol. 2012;52(1):237–44. https://doi.org/10.1016/j.yjmcc.2011.10.013.

    Article  CAS  PubMed  Google Scholar 

  40. Cai J, Pardali E, Sanchez-Duffhues G, ten Dijke P. BMP signaling in vascular diseases. FEBS Lett. 2012;586(14):1993–2002. https://doi.org/10.1016/j.febslet.2012.04.030.

    Article  CAS  PubMed  Google Scholar 

  41. Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-beta/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. 2015;3:15005. https://doi.org/10.1038/boneres.2015.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yung LM, Sanchez-Duffhues G, Ten Dijke P, Yu PB. Bone morphogenetic protein 6 and oxidized low-density lipoprotein synergistically recruit osteogenic differentiation in endothelial cells. Cardiovasc Res. 2015;108(2):278–87. https://doi.org/10.1093/cvr/cvv221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lanigan F, Gremel G, Hughes R, Brennan DJ, Martin F, Jirstrom K, et al. Homeobox transcription factor muscle segment homeobox 2 (Msx2) correlates with good prognosis in breast cancer patients and induces apoptosis in vitro. Breast Cancer Res. 2010;12(4):R59–14. https://doi.org/10.1186/bcr2621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao JY, Zhuang FF, Wang HY, Wu D, Zhang JS. Msx2 plays a critical role in lens epithelium cell cycle control. Int J Ophthalmol. 2013;6(3):276–9. https://doi.org/10.3980/j.issn.2222-3959.2013.03.04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shao JS, Cheng SL, Pingsterhaus JM, Charlton-Kachigian N, Loewy AP, Towler DA. Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest. 2005;115(5):1210–20. https://doi.org/10.1172/JCI24140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kowanetz M, Valcourt U, Bergstrom R, Heldin CH, Moustakas A. Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor beta and bone morphogenetic protein. Mol Cell Biol. 2004;24(10):4241–54.

    Article  CAS  Google Scholar 

  47. Yang J, Li X, Al-Lamki RS, Wu C, Weiss A, Berk J, et al. Sildenafil potentiates bone morphogenetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmonary hypertension. Arterioscler Thromb Vasc Biol. 2013;33(1):34–42. https://doi.org/10.1161/ATVBAHA.112.300121.

    Article  CAS  PubMed  Google Scholar 

  48. Binnerts ME, Wen X, Cante-Barrett K, Bright J, Chen HT, Asundi V, et al. Human Crossveinless-2 is a novel inhibitor of bone morphogenetic proteins. Biochem Biophys Res Commun. 2004;315(2):272–80. https://doi.org/10.1016/j.bbrc.2004.01.048.

    Article  CAS  PubMed  Google Scholar 

  49. Moser M, Yu Q, Bode C, Xiong JW, Patterson C. BMPER is a conserved regulator of hematopoietic and vascular development in zebrafish. J Mol Cell Cardiol. 2007;43(3):243–53. https://doi.org/10.1016/j.yjmcc.2007.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sheweita S, Salama B, Hassan M. Erectile dysfunction drugs and oxidative stress in the liver of male rats. Toxicol Rep. 2015;2:933–8. https://doi.org/10.1016/j.toxrep.2015.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bachetti T, Morbidelli L. Endothelial cells in culture: a model for studying vascular functions. Pharmacol Res. 2000;42(1):9–19. https://doi.org/10.1006/phrs.1999.0655.

    Article  CAS  PubMed  Google Scholar 

  52. Aley PK, Bauer CC, Dallas ML, Boyle JP, Porter KE, Peers C. Hypoxic modulation of ca(2+) signaling in human venous and arterial endothelial cells. J Membr Biol. 2009;227(3):151–8. https://doi.org/10.1007/s00232-008-9147-z.

    Article  CAS  PubMed  Google Scholar 

  53. Min C, Kang E, Yu SH, Shinn SH, Kim YS. Advanced glycation end products induce apoptosis and procoagulant activity in cultured human umbilical vein endothelial cells. Diabetes Res Clin Pract. 1999;46(3):197–202. https://doi.org/10.1016/s0168-8227(99)00094-7.

    Article  CAS  PubMed  Google Scholar 

  54. Iwata Y, Klaren WD, Lebakken CS, Grimm FA, Rusyn I. High-content assay multiplexing for vascular toxicity screening in induced pluripotent stem cell-derived endothelial cells and human umbilical vein endothelial cells. Assay Drug Dev Technol. 2017;15(6):267–79. https://doi.org/10.1089/adt.2017.786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We also thank Jodi Smith, PhD, and Lisa Kreiner, PhD, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Funding

The present study was financially supported by the Shandong Provincial Natural Science Foundation (project ZR2017PH026 and ZR2015PH010) and the National Natural Science Foundation of China (project 81700053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youfei Fan.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethics Approval

The study was approved by Shandong Provincial Hospital Research Ethics Committee (No.2017-111). The study was performed in accordance with the Declaration of Helsinki and with the written informed consent of all participants.

Informed Consent

Informed consent was obtained from all individual participants who were included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, F., Han, B., Jiang, D. et al. The Phosphodiesterase-5 Inhibitor Vardenafil Improves the Activation of BMP Signaling in Response to Hydrogen Peroxide. Cardiovasc Drugs Ther 34, 41–52 (2020). https://doi.org/10.1007/s10557-020-06939-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-020-06939-5

Keywords

Navigation