Skip to main content
Log in

Comparative SRY incorporation on the regulatory regions of pluripotency/differentiation genes in human embryonic carcinoma cells after retinoic acid induction

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Members of the SOX (SRY box) family proteins play critical roles in multiple aspects of development. SRY, as a founder member of SOX family, has been long believed to be involved in the development of sexual gonads by triggering signaling cascades which lead to the formation of testis or ovary from bipotential gonads. However, less is known about other potential regulatory roles of SRY in the development and differentiation. In order to gain further insight into the possible roles of SRY during development, we looked into possible SRY-regulated genes and their levels of expression in a human embryonic carcinoma cell line, named NTera2, before and after induction of differentiation. For this respect, SRY incorporation on the regulatory regions of two groups of genes including OCT4, NANOG, and SOX2 as pluripotency marker genes, and NESTIN and PAX6 as differentiation marker genes were evaluated quantitatively. Chromatin immunoprecipitation using SRY antibody was performed on chromatin extract of a human embryonic carcinoma cell line, NT2/NTERA-2, before and after onset of differentiation. The results showed that incorporation of SRY in both groups of genes was increased after induction of differentiation. Besides, lower expression of OCT4, SOX2, and NANOG and higher expression of PAX6 and NESTIN genes in differentiated cells suggest that SRY may act as a transcription repressor for pluripotency-associated genes and as a transcription activator for differentiation-related genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Uwanogho D, Rex M, Cartwright EJ, Pearl G, Healy C, Scotting PJ, Sharpe PT (1995) Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech Dev 49:23–36

    Article  PubMed  CAS  Google Scholar 

  2. Hargrave M, Wright E, Kun J, Emery J, Cooper L, Koopman P (1997) Expression of the Sox11 gene in mouse embryos suggests roles in neuronal maturation and epithelio-mesenchymal induction. Dev Dyn 210:79–86. doi:10.1002/(SICI)1097-0177(199710)210:2<79:AID-AJA1>3.0.CO;2-6

    Article  PubMed  CAS  Google Scholar 

  3. Rex M, Uwanogho DA, Orme A, Scotting PJ, Sharpe PT (1997) cSox21 exhibits a complex and dynamic pattern of transcription during embryonic development of the chick central nervous system. Mech Dev 66:39–53

    Article  PubMed  CAS  Google Scholar 

  4. Wegner M (1999) From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res 27:1409–1420

    Article  PubMed  CAS  Google Scholar 

  5. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf A-M, Lovell-Badge R, Goodfellow PN (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346:240–244

    Article  PubMed  CAS  Google Scholar 

  6. Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Munsterberg A, Vivian N, Goodfellow P, Lovell-Badge R (1990) A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346:245–250. doi:10.1038/346245a0

    Article  PubMed  CAS  Google Scholar 

  7. Harley VR, Jackson DI, Hextall PJ, Hawkins JR, Berkovitz GD, Sockanathan S, Lovell-Badge R, Goodfellow PN (1992) DNA binding activity of recombinant SRY from normal males and XY females. Science 255:453–456

    Article  PubMed  CAS  Google Scholar 

  8. Ferrari S, Harley VR, Pontiggia A, Goodfellow PN, Lovell-Badge R, Bianchi ME (1992) SRY, like HMG1, recognizes sharp angles in DNA. EMBO J 11:4497–4506

    PubMed  CAS  Google Scholar 

  9. Pontiggia A, Rimini R, Harley VR, Goodfellow PN, Lovell-Badge R, Bianchi ME (1994) Sex-reversing mutations affect the architecture of SRY-DNA complexes. EMBO J 13:6115–6124

    PubMed  CAS  Google Scholar 

  10. Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351:117–121. doi:10.1038/351117a0

    Article  PubMed  CAS  Google Scholar 

  11. Capel B (1998) Sex in the 90s: SRY and the switch to the male pathway. Annu Rev Physiol 60:497–523. doi:10.1146/annurev.physiol.60.1.497

    Article  PubMed  CAS  Google Scholar 

  12. Sekido R, Lovell-Badge R (2008) Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453:930–934. doi:10.1038/nature06944

    Article  PubMed  CAS  Google Scholar 

  13. Bradford ST, Hiramatsu R, Maddugoda MP, Bernard P, Chaboissier MC, Sinclair A, Schedl A, Harley V, Kanai Y, Koopman P, Wilhelm D (2009) The cerebellin 4 precursor gene is a direct target of SRY and SOX9 in mice. Biol Reprod 80:1178–1188. doi:10.1095/biolreprod.108.071480

    Article  PubMed  CAS  Google Scholar 

  14. Cupp AS, Uzumcu M, Skinner MK (2003) Chemotactic role of neurotropin 3 in the embryonic testis that facilitates male sex determination. Biol Reprod 68:2033–2037. doi:10.1095/biolreprod.102.012617

    Article  PubMed  CAS  Google Scholar 

  15. Xu Z, Gao X, He Y, Ju J, Zhang M, Liu R, Wu Y, Ma C, Lin Z, Huang X, Zhao Q (2012) Synergistic effect of SRY and its direct target, WDR5, on Sox9 expression. PLoS One 7:e34327. doi:10.1371/journal.pone.0034327

    Article  PubMed  CAS  Google Scholar 

  16. Bhandari RK, Sadler-Riggleman I, Clement TM, Skinner MK (2011) Basic helix-loop-helix transcription factor TCF21 is a downstream target of the male sex determining gene SRY. PLoS One 6:e19935. doi:10.1371/journal.pone.0019935

    Article  PubMed  CAS  Google Scholar 

  17. Jin VX, O’Geen H, Iyengar S, Green R, Farnham PJ (2007) Identification of an OCT4 and SRY regulatory module using integrated computational and experimental genomics approaches. Genome Res 17:807–817. doi:10.1101/gr.6006107

    Article  PubMed  CAS  Google Scholar 

  18. Bhattacharya B, Puri S, Puri RK (2009) A review of gene expression profiling of human embryonic stem cell lines and their differentiated progeny. Curr Stem Cell Res Ther 4:98–106

    Article  PubMed  CAS  Google Scholar 

  19. Bhattacharya B, Cai J, Luo Y, Miura T, Mejido J, Brimble SN, Zeng X, Schulz TC, Rao MS, Puri RK (2005) Comparison of the gene expression profile of undifferentiated human embryonic stem cell lines and differentiating embryoid bodies. BMC Dev Biol 5:22. doi:10.1186/1471-213X-5-22

    Article  PubMed  Google Scholar 

  20. Shahhoseini M, Taei A, Mehrjardi NZ, Salekdeh GH, Baharvand H (2010) Epigenetic analysis of human embryonic carcinoma cells during retinoic acid-induced neural differentiation. Biochem Cell Biol 88:527–538. doi:10.1139/o09-181

    Article  PubMed  CAS  Google Scholar 

  21. Shahhoseini M, Favaedi R, Baharvand H, Sharma V, Stunnenberg HG (2010) Evidence for a dynamic role of the linker histone variant H1x during retinoic acid-induced differentiation of NT2 cells. FEBS Lett 584:4661–4664. doi:10.1016/j.febslet.2010.10.041

    Article  PubMed  CAS  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  23. Favaedi R, Shahhoseini M, Akhoond MR (2012) Comparative epigenetic analysis of Oct4 regulatory region in RA-induced differentiated NT2 cells under adherent and non-adherent culture conditions. Mol Cell Biochem 363:129–134. doi:10.1007/s11010-011-1165-y

    Article  PubMed  CAS  Google Scholar 

  24. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2002) The human genome browser at UCSC. Genome Res 12:996–1006. doi:10.1101/gr.229102 Article published online before print in May 2002

    PubMed  CAS  Google Scholar 

  25. Chen S, Xu Y, Chen Y, Li X, Mou W, Wang L, Liu Y, Reisfeld RA, Xiang R, Lv D, Li N (2012) SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells. PLoS One 7(5):e36326. doi:10.1371/journal.pone.0036326

    Article  PubMed  CAS  Google Scholar 

  26. Milsted A, Serova L, Sabban EL, Dunphy G, Turner ME, Ely DL (2004) Regulation of tyrosine hydroxylase gene transcription by Sry. Neurosci Lett 369:203–207. doi:10.1016/j.neulet.2004.07.052

    Article  PubMed  CAS  Google Scholar 

  27. Clement TM, Bhandari RK, Sadler-Riggleman I, Skinner MK (2011) SRY directly regulates the neurotrophin 3 promoter during male sex determination and testis development in rats. Biol Reprod 85:277–284. doi:10.1095/biolreprod.110.090282

    Article  PubMed  CAS  Google Scholar 

  28. Przyborski SA, Morton IE, Wood A, Andrews PW (2000) Developmental regulation of neurogenesis in the pluripotent human embryonal carcinoma cell line NTERA-2. Eur J Neurosci 12:3521–3528

    Article  PubMed  CAS  Google Scholar 

  29. Dewing P, Chiang CW, Sinchak K, Sim H, Fernagut PO, Kelly S, Chesselet MF, Micevych PE, Albrecht KH, Harley VR, Vilain E (2006) Direct regulation of adult brain function by the male-specific factor SRY. Curr Biol 16:415–420. doi:10.1016/j.cub.2006.01.017

    Article  PubMed  CAS  Google Scholar 

  30. Zhang K, Zhang L, Rao F, Brar B, Rodriguez-Flores JL, Taupenot L, O’Connor DT (2010) Human tyrosine hydroxylase natural genetic variation: delineation of functional transcriptional control motifs disrupted in the proximal promoter. Circ Cardiovasc Genet 3:187–198. doi:10.1161/CIRCGENETICS.109.904813

    Article  PubMed  CAS  Google Scholar 

  31. Wu JB, Chen K, Li Y, Lau YF, Shih JC (2009) Regulation of monoamine oxidase A by the SRY gene on the Y chromosome. FASEB J 23:4029–4038. doi:10.1096/fj.09-139097

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Raha Favaedi for her kindly technical support in the project. The authors would like to dedicate this paper to the memory of Dr. Saeid Kazemi Ashtiani, the late founder of Royan Institute. This project was financially supported by the Grant # 647 of Royan Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Shahhoseini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakhki, S.A., Shahhoseini, M. & Salekdeh, G.H. Comparative SRY incorporation on the regulatory regions of pluripotency/differentiation genes in human embryonic carcinoma cells after retinoic acid induction. Mol Cell Biochem 376, 145–150 (2013). https://doi.org/10.1007/s11010-013-1562-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1562-5

Keywords

Navigation