Skip to main content
Log in

Knockdown of dishevelled-1 attenuates cyclosporine A-induced apoptosis in H9c2 cardiomyoblast cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cyclosporine (CsA) has become a mainstay for immune suppression of organ transplants. It is known that patients receiving CsA manifest increased growth of aggressive cardiotoxicity. We have demonstrated that CsA induces myocardium cell apoptosis in vivo and vitro. Recently, dishevelled-1 (Dvl-1) protein, which is a cytoplasmic mediator of Wnt/β-catenin signaling, was explored in cardiac diseases. However, whether Dvl-1 is involved in CsA-induced apoptosis remains to be determined. The aim of this study was to explore the role of Dvl-1 in CsA-induced apoptosis in H9c2 cardiomyoblast cells and to investigate the role of the Wnt/β-catenin signaling cascade in this progress. H9c2 cells were treated with CsA in dose and time-dependent manners. We found that the appropriate concentrations and time-points of CsA-induced the expression of Dvl-1 and subsequent up-regulation of β-catenin and c-Myc, which is consistent with previously demonstrated concentrations and time-points when H9c2 cells apoptosis occurred. Then, cells were transfected with small interfering RNA (siRNA) against Dvl-1 and stimulated with previously demonstrated concentration of CsA. Dvl-1 down-regulation decreased the apoptotic rate, caspase-3 activity, and the Bax/Bcl-2 ratio in H9c2 cells treated with CsA. Furthermore, knocking down the expression of Dvl-1 partially suppressed the activity of the Wnt/β-catenin pathway. Moreover, we further deleted the downstream member β-catenin by specific siRNA, and found that CsA-induced the Bax/Bcl-2 ratio and the expression of c-Myc, which were attenuated. Our results are the first to unveil this novel aspect of Dvl-1 signaling. In addition, these data provide insight into the pathogenesis and the therapeutic strategies of CsA-induced myocardial injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Laczkovics A, Havel M, Teufelsbauer H, Horvath R, Schreiner W, Wolner E (1987) Cyclosporin-A induced heart failure after orthotopic heart transplantation. Thorac Cardiovasc Surg 35:83–86

    Article  PubMed  CAS  Google Scholar 

  2. Wongmekiat O, Thamprasert K (2005) Investigating the protective effects of aged garlic extract on cyclosporin-induced nephrotoxicity in rats. Fundam Clin Pharmacol 19:555–562

    Article  PubMed  CAS  Google Scholar 

  3. Selcoki Y, Uz E, Bayrak R, Sahin S, Kaya A, Uz B, Karanfil A, Ozkara A, Akcay A (2007) The protective effect of erdosteine against cyclosporine A-induced cardiotoxicity in rats. Toxicology 239:53–59

    Article  PubMed  CAS  Google Scholar 

  4. Rezzani R, Rodella LF, Fraschini F, Gasco MR, Demartini G, Musicanti C, Reiter RJ (2009) Melatonin delivery in solid lipid nanoparticles: prevention of cyclosporine A induced cardiac damage. J Pineal Res 46:255–261

    Article  PubMed  CAS  Google Scholar 

  5. Zhao Y, Hou G, Zhang Y, Chi J, Zhang L, Zou X, Tang J, Liu Y, Fu Y, Yin X (2011) Involvement of the calcium-sensing receptor in cyclosporin A-induced cardiomyocyte apoptosis in rats. Pharmazie 669:68–974

    Google Scholar 

  6. Ozkan G, Ulusoy S, Alkanat M, Orem A, Akcan B, Ersoz S, Yulug E, Kaynar K, Al S (2012) Antiapoptotic and antioxidant effects of GSPE in preventing cyclosporine A-induced cardiotoxicity. Ren Fail 34:460–466

    Article  PubMed  CAS  Google Scholar 

  7. Rezzani R, Rodella LF, Bonomini F, Tengattini S, Bianchi R, Reiter RJ (2006) Beneficial effects of melatonin in protecting against cyclosporine A-induced cardiotoxicity are receptor mediated. J Pineal Res 41:288–295

    Article  PubMed  CAS  Google Scholar 

  8. Waldmeier PC, Feldtrauer JJ, Qian T, Lemasters JJ (2002) Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811. Mol Pharmacol 62:22–29

    Article  PubMed  CAS  Google Scholar 

  9. Gao C, Chen YG (2010) Dishevelled: the hub of Wnt signaling. Cell Signal 22:717–727

    Article  PubMed  CAS  Google Scholar 

  10. Wallingford JB, Habas R (2005) The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132:4421–4436

    Article  PubMed  CAS  Google Scholar 

  11. Moon RT, Kohn AD, De Ferrari GV, Kaykas A (2004) WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5:691–701

    Article  PubMed  CAS  Google Scholar 

  12. van Gijn ME, Snel F, Cleutjens JP, Smits JF, Blankesteijn WM (2001) Overexpression of components of the Frizzled-Dishevelled cascade results in apoptotic cell death, mediated by beta-catenin. Exp Cell Res 265:46–53

    Article  PubMed  Google Scholar 

  13. Malekar P, Hagenmueller M, Anyanwu A, Buss S, Streit MR, Weiss CS, Wolf D, Riffel J, Bauer A, Katus HA, Hardt SE (2010) Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling. Hypertension 55:939–945

    Article  PubMed  CAS  Google Scholar 

  14. van de Schans VA, van den Borne SW, Strzelecka AE, Janssen BJ, van der Velden JL, Langen RC, Wynshaw-Boris A, Smits JF, Blankesteijn WM (2007) Interruption of Wnt signaling attenuates the onset of pressure overload-induced cardiac hypertrophy. Hypertension 49:473–480

    Article  PubMed  Google Scholar 

  15. Chi J, Zhu Y, Fu Y, Liu Y, Zhang X, Han L, Yin X, Zhao D (2012) Cyclosporin A induces apoptosis in H9c2 cardiomyoblast cells through calcium-sensing receptor-mediated activation of the ERK MAPK and p38 MAPK pathways. Mol Cell Biochem 367:227–236

    Article  PubMed  CAS  Google Scholar 

  16. Yeh CT, Yao CJ, Yan JL, Chuang SE, Lee LM, Chen CM, Yeh CF, Li CH, Lai GM (2011) Apoptotic Cell Death and Inhibition of Wnt/beta-Catenin Signaling Pathway in Human Colon Cancer Cells by an Active Fraction (HS7) from Taiwanofungus camphoratus. Evidence Based Complement Altern Med 2011:750230

    Google Scholar 

  17. Uematsu K, He B, You L, Xu Z, McCormick F, Jablons DM (2003) Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene 22:7218–7221

    Article  PubMed  CAS  Google Scholar 

  18. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    Article  PubMed  CAS  Google Scholar 

  19. Sundarraj S, Thangam R, Sreevani V, Kaveri K, Gunasekaran P, Achiraman S, Kannan S (2012) Gamma-Sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells. J Ethnopharmacol 141(3):803–809

    Article  PubMed  CAS  Google Scholar 

  20. Jarvinen K, Hotti A, Santos L, Nummela P, Holtta E (2011) Caspase-8, c-FLIP, and caspase-9 in c-Myc-induced apoptosis of fibroblasts. Exp Cell Res 317:2602–2615

    Article  PubMed  Google Scholar 

  21. Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8:387–398

    Article  PubMed  CAS  Google Scholar 

  22. Tzahor E (2007) Wnt/beta-catenin signaling and cardiogenesis: timing does matter. Dev Cell 13:10–13

    Article  PubMed  CAS  Google Scholar 

  23. Parmalee NL, Kitajewski J (2008) Wnt signaling in angiogenesis. Curr Drug Targets 9:558–564

    Article  PubMed  CAS  Google Scholar 

  24. Sharov VG, Todor A, Khanal S, Imai M, Sabbah HN (2007) Cyclosporine A attenuates mitochondrial permeability transition and improves mitochondrial respiratory function in cardiomyocytes isolated from dogs with heart failure. J Mol Cell Cardiol 42:150–158

    Article  PubMed  CAS  Google Scholar 

  25. Florio S, Ciarcia R, Crispino L, Pagnini U, Ruocco A, Kumar C, D’Andrilli G, Russo F (2003) Hydrocortisone has a protective effect on CyclosporinA-induced cardiotoxicity. J Cell Physiol 195:21–26

    Article  PubMed  CAS  Google Scholar 

  26. Tang J, Wang G, Liu Y, Fu Y, Chi J, Zhu Y, Zhao Y, Yin X (2011) Cyclosporin A induces cardiomyocyte injury through calcium-sensing receptor-mediated calcium overload. Pharmazie 66:52–57

    PubMed  CAS  Google Scholar 

  27. Hail N Jr, Carter BZ, Konopleva M, Andreeff M (2006) Apoptosis effector mechanisms: a requiem performed in different keys. Apoptosis 11:889–904

    Article  PubMed  Google Scholar 

  28. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681

    Article  PubMed  CAS  Google Scholar 

  29. Gu X, Yao Y, Cheng R, Zhang Y, Dai Z, Wan G, Yang Z, Cai W, Gao G, Yang X (2011) Plasminogen K5 activates mitochondrial apoptosis pathway in endothelial cells by regulating Bak and Bcl-x(L) subcellular distribution. Apoptosis 16:846–855

    Article  PubMed  CAS  Google Scholar 

  30. Fodde R, Brabletz T (2007) Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 19:150–158

    Article  PubMed  CAS  Google Scholar 

  31. D’Mello SR, Anelli R, Calissano P (1994) Lithium induces apoptosis in immature cerebellar granule cells but promotes survival of mature neurons. Exp Cell Res 211:332–338

    Article  PubMed  Google Scholar 

  32. Madiehe AM, Mampuru LJ, Tyobeka EM (1995) Induction of apoptosis in HL-60 cells by lithium. Biochem Biophys Res Commun 209:768–774

    Article  PubMed  CAS  Google Scholar 

  33. Strovel ET, Sussman DJ (1999) Transient overexpression of murine dishevelled genes results in apoptotic cell death. Exp Cell Res 253:637–648

    Article  PubMed  CAS  Google Scholar 

  34. Eischen CM, Woo D, Roussel MF, Cleveland JL (2001) Apoptosis triggered by Myc-induced suppression of Bcl-X(L) or Bcl-2 is bypassed during lymphomagenesis. Mol Cell Biol 21:5063–5070

    Article  PubMed  CAS  Google Scholar 

  35. Wang C, Tai Y, Lisanti MP, Liao DJ (2011) c-Myc induction of programmed cell death may contribute to carcinogenesis: a perspective inspired by several concepts of chemical carcinogenesis. Cancer Biol Ther 11:615–626

    Article  PubMed  CAS  Google Scholar 

  36. Eischen CM, Packham G, Nip J, Fee BE, Hiebert SW, Zambetti GP, Cleveland JL (2001) Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F–1. Oncogene 20:6983–6993

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hong Ling for the generous gift of the H9c2 cell line. This study was supported by the National Natural Science Foundation of China (30872387) and the Postgraduate Foundation of the National Education Ministry of China (200802260006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinhua Yin or Dechao Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Chi, J., Liu, Y. et al. Knockdown of dishevelled-1 attenuates cyclosporine A-induced apoptosis in H9c2 cardiomyoblast cells. Mol Cell Biochem 374, 113–123 (2013). https://doi.org/10.1007/s11010-012-1510-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1510-9

Keywords

Navigation