Skip to main content
Log in

Cyclosporin A induces apoptosis in H9c2 cardiomyoblast cells through calcium-sensing receptor-mediated activation of the ERK MAPK and p38 MAPK pathways

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The cardiotoxicity of cyclosporine A (CsA) limits its clinical application in extensive and long-term therapies. Our group has shown that CsA induces myocardium cell apoptosis in vivo and increases calcium-sensing receptor (CaSR) expression. However, its molecular mechanism remains unknown. The purpose of this study was to determine whether CaSR plays an essential role in CsA-induced apoptosis in H9c2 cells and to investigate the role of the mitogen-activated protein kinase (MAPK) signaling cascade in this process. H9c2 cells were treated with CsA in a dose-dependent manner, and decreased Bcl-2 expression, increased Bax expression, and caspase-3 activation were observed. In a time-dependent manner, CsA increased CaSR expression, activated the extracellularly regulated kinase (ERK) and p38 MAPK pathways, and inactivated the c-Jun N-terminal kinase (JNK) MAPK signaling pathway. When H9c2 cardiomyoblast cells pretreated with gadolinium chloride (GdCl3), a CaSR activator, were treated with CsA, decreased phosphorylation of ERK1/2, increased phosphorylation of p38, decreased Bcl-2 expression, increased Bax expression, and activated caspase-3 were observed. Cells pretreated with the CaSR inhibitor NPS2390 inhibited this process. Furthermore, the MEK1/2 inhibitor U0126 and the p38 MAPK inhibitor SB203580 markedly blocked the effect of CsA on cell apoptosis, apoptotic-related protein expression, and caspase-3 activation. These findings showed that CsA induced apoptosis in H9c2 cells in vitro, and CaSR mediated the degradation of ERK MAPK and the upregulation of the p38 MAPK pathway involved in CsA-induced H9c2 cardiomyoblast cell apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kahan BD (1992) Immunosuppressive therapy. Curr Opin Immunol 4:553–560

    Article  PubMed  CAS  Google Scholar 

  2. Borel JF, Baumann G, Chapman I, Donatsch P, Fahr A, Mueller EA, Vigouret JM (1996) In vivo pharmacological effects of ciclosporin and some analogues. Adv Pharmacol 35:115–246

    Article  PubMed  CAS  Google Scholar 

  3. Krejci K, Tichy T, Bachleda P, Zadrazil J (2010) Calcineurin inhibitor-induced renal allograft nephrotoxicity. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 154:297–306

    PubMed  Google Scholar 

  4. Warren RB, Griffiths CE (2008) Systemic therapies for psoriasis: methotrexate, retinoids, and cyclosporine. Clin Dermatol 26:438–447

    Article  PubMed  Google Scholar 

  5. Rezzani R (2006) Exploring cyclosporine A-side effects and the protective role-played by antioxidants: the morphological and immunohistochemical studies. Histol Histopathol 21:301–316

    PubMed  CAS  Google Scholar 

  6. Kockx M, Jessup W, Kritharides L (2010) Cyclosporin A and atherosclerosis: cellular pathways in atherogenesis. Pharmacol Ther 128:106–118

    Article  PubMed  CAS  Google Scholar 

  7. Schreiner KD, Kelemen K, Zehelein J, Becker R, Senges JC, Bauer A, Voss F, Kraft P, Katus HA, Schoels W (2004) Biventricular hypertrophy in dogs with chronic AV block: effects of cyclosporin A on morphology and electrophysiology. Am J Physiol Heart Circ Physiol 287:H2891–H2898

    Article  PubMed  CAS  Google Scholar 

  8. Sandrine Bèsa, David Vandrouxa, Cindy Tissiera, Lisa Devillarda, Amandine Brochota, Etienne Tatoua, Laurence Duvillardb, Luc Rochettea, Pierre Athias (2005) Direct, pleiotropic protective effect of cyclosporin A against simulated ischemia-induced injury in isolated cardiomyocytes. Eur J Pharmacol 511:109–120

    Article  Google Scholar 

  9. Sharov VG, Todor A, Khanal S, Imai M, Sabbah HN (2007) Cyclosporine A attenuates mitochondrial permeability transition and improves mitochondrial respiratory function in cardiomyocytes isolated from dogs with heart failure. J Mol Cell Cardiol 42:150–158

    Article  PubMed  CAS  Google Scholar 

  10. Rezzani R, Rodella L, Dessy C, Daneau G, Bianchi R, Feron O (2003) Changes in Hsp90 expression determine the effects of cyclosporine A on the NO pathway in rat myocardium. FEBS Lett 552:125–129

    Article  PubMed  CAS  Google Scholar 

  11. Tang J, Wang G, Liu Y, Fu Y, Chi J, Zhu Y, Zhao Y, Yin X (2011) Cyclosporin A induces cardiomyocyte injury through calcium-sensing receptor-mediated calcium overload. Pharmazie 66:52–57

    PubMed  CAS  Google Scholar 

  12. Wang M, Yao Y, Kuang D, Hampson DR (2006) Activation of family C G-protein coupled receptors by the tripeptide glutathione. J Biol Chem 281:8864–8870

    Article  PubMed  CAS  Google Scholar 

  13. Sanela Smajilovic, Jacob Tfelt-Hansen (2008) Novel role of the calcium-sensing receptor in blood pressure modulation. Hypertension 52:994–1000

    Article  Google Scholar 

  14. Wang R, Xu C, Zhao W, Zhang J, Cao K, Yang B, Wu L (2003) Calcium and polyamine regulated calcium sensing receptors in cardiac tissues. Eur J Biochem 270:2680–2688

    Article  PubMed  CAS  Google Scholar 

  15. Tfelt-Hansen J, Hansen JL, Smajilovic S, Terwilliger EF, Haunso S, Sheikh SP (2006) Calcium receptor is functionally expressed in rat neonatal ventricular cardiomyocytes. Am J Physiol Heart Circ Physiol 290:H1165–H1171

    Article  PubMed  CAS  Google Scholar 

  16. Zhang WH, Fu SB, Lu FH, Wu B, Gong DM, Pan ZW, Lv YJ, Zhao YJ, Li QF, Wang R, Yang BF, Xu CQ (2006) Involvement of calcium-sensing receptor in ischemia/reperfusion-induced apoptosis in rat cardiomyocytes. Biochem Biophys Res Commun 347:872–881

    Article  PubMed  CAS  Google Scholar 

  17. Gao N, Budhraja A, Cheng S, Liu EH, Huang C, Chen J, Yang Z, Chen D, Zhang Z, Shi X (2011) Interruption of the MEK/ERK signaling cascade promotes dihydroartemisinin-induced apoptosis in vitro and in vivo. Apoptosis 16:511–523

    Article  PubMed  CAS  Google Scholar 

  18. Hail N Jr, Carter BZ, Konopleva M, Andreeff M (2006) Apoptosis effector mechanisms: a requiem performed in different keys. Apoptosis 11:889–904

    Article  PubMed  Google Scholar 

  19. Buggins AG, Pepper CJ (2010) The role of Bcl-2 family proteins in chronic lymphocytic leukaemia. Leuk Res 34:837–842

    Article  PubMed  CAS  Google Scholar 

  20. Gu X, Yao Y, Cheng R, Zhang Y, Dai Z, Wan G, Yang Z, Cai W, Gao G, Yang X (2011) Plasminogen K5 activates mitochondrial apoptosis pathway in endothelial cells by regulating Bak and Bcl-x(L) subcellular distribution. Apoptosis 16:846–855

    Article  PubMed  CAS  Google Scholar 

  21. Meyer Zu Schwabedissen HE, Grube M, Dreisbach A, Jedlitschky G, Meissner K, Linnemann K, Fusch C, Ritter CA, Völker U, Kroemer HK (2006) Epidermal growth factor (EGF) mediated activation of the MAP kinase cascade results in altered expression and function of ABCG2 (BCRP). Drug Metab Dispos 34:524–533

    Article  PubMed  CAS  Google Scholar 

  22. Roos TU, Heiss EH, Schwaiberger AV, Schachner D, Sroka IM, Oberan T, Vollmar AM, Dirsch VM (2011) Caffeic acid phenethyl ester inhibits PDGF-induced proliferation of vascular smooth muscle cells via activation of p38 MAPK, HIF-1α, and heme oxygenase-1. J Nat Prod 74:352–356

    Article  PubMed  CAS  Google Scholar 

  23. Miwa M, Kozawa O, Tokuda H, Uematsu T (1999) Mitogen-activated protein (MAP) kinases are involved in interleukin-1 (IL-1) induced IL-6 synthesis in osteoblasts: modulation not of p38 MAP kinase, but of p42/p44 MAP kinase by IL-1-activated protein kinase C. Endocrinology 140:5120–5125

    Article  PubMed  CAS  Google Scholar 

  24. Gao J, Li J, Ma L (2005) Regulation of EGF-induced ERK/MAPK activation and EGFR internalization by Gprotein-coupled receptor kinase 2. Acta Biochim Biophys Sin 37:525–531

    Article  PubMed  CAS  Google Scholar 

  25. Gripentrog JM, Miettinen HM (2005) Activation and nuclear translocation of ERK1/2 by the formyl peptide receptor is regulated by G protein and is not dependent on beta-arrestin translocation or receptor endocytosis. Cell Signal 17:1300–1311

    Article  PubMed  CAS  Google Scholar 

  26. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331

    Article  PubMed  CAS  Google Scholar 

  27. Kaminska B, Figiel I, Pyrzynska B, Czajkowski R, Mosieniak G (2001) Treatment of hippocampal neurons with cyclosporin A results in calcium overload and apoptosis which are independent on NMDA receptor activation. Br J Pharmacol 133:997–1004

    Article  PubMed  CAS  Google Scholar 

  28. Florio S, Ciarcia R, Crispino L, Pagnini U, Ruocco A, Kumar C, D’Andrilli G, Russo F (2003) Hydrocortisone has a protective effect on cyclosporin A-induced cardiotoxicity. J Cell Physiol 195:21–26

    Article  PubMed  CAS  Google Scholar 

  29. Adams JM, Cory S (2007) Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 19:488–496

    Article  PubMed  CAS  Google Scholar 

  30. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  PubMed  CAS  Google Scholar 

  31. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  PubMed  CAS  Google Scholar 

  32. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681

    Article  PubMed  CAS  Google Scholar 

  33. Benadiba M, Dos Santos RR, Silva Dde O, Colquhoun A (2010) Inhibition of C6 rat glioma proliferation by [Ru2Cl(Ibp)4] depends on changes in p21, p27, Bax/Bcl2 ratio and mitochondrial membrane potential. J Inorg Biochem 104:928–935

    Article  PubMed  CAS  Google Scholar 

  34. Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75:50–83

    Article  PubMed  CAS  Google Scholar 

  35. Junttila MR, Li SP, Westermarck J (2008) Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 22:954–965

    Article  PubMed  CAS  Google Scholar 

  36. Liu HZ, Yu C, Yang Z, He JL, Chen WJ, Yin J, Li WM, Liu HT, Wang YX (2011) Tubeimoside I sensitizes cisplatin in cisplatin-resistant human ovarian cancer cells (A2780/DDP) through down-regulation of ERK and up-regulation of p38 signaling pathways. Mol Med Report 4:985–992

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (30872387) and the Postgraduate Foudation of the National Education Ministry of China (200802260006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinhua Yin or Dechao Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chi, J., Zhu, Y., Fu, Y. et al. Cyclosporin A induces apoptosis in H9c2 cardiomyoblast cells through calcium-sensing receptor-mediated activation of the ERK MAPK and p38 MAPK pathways. Mol Cell Biochem 367, 227–236 (2012). https://doi.org/10.1007/s11010-012-1336-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1336-5

Keywords

Navigation