Skip to main content

Advertisement

Log in

INMAP, a novel truncated version of POLR3B, represses AP-1 and p53 transcriptional activity

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

INMAP was first identified as an interphase nucleus and mitotic apparatus-associated protein that plays essential roles in the formation of the spindle and cell-cycle progression. Here, we report that INMAP might be conserved from prokaryotes to humans, is a truncated version of the RNA polymerase III subunit B POLR3B, and is up-regulated in several human cancer cell lines including HeLa, Bel-7402, HepG2 and BGC-823. Deletion analysis revealed that the 209–290 amino-acid region is necessary for the punctate distribution of INMAP in the nucleus. Furthermore, over-expression of INMAP inhibited the transcriptional activities of p53 and AP-1 in a dose-dependent manner. These results suggest that INMAP may function through the p53 and AP-1 pathways, thus providing a possible link of its activity with tumourigenesis. Integrating our data and those in previous studies, it can be concluded that INMAP plays dual functional roles in the coordination of mitotic kinetics with gene expression as well as in cell-fate determination and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Robert G, William J (1969) Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 224:235

    Google Scholar 

  2. Roeder RG (2003) The eukaryotic transcriptional machinery: complexities and mechanisms unforeseen. Nat Med 9:1239–1244

    Article  PubMed  CAS  Google Scholar 

  3. Geiduschek EP, Kassavetis GA (2001) The RNA polymerase III transcription apparatus. J Mol Biol 310:1–26

    Article  PubMed  CAS  Google Scholar 

  4. Paule MR, White RJ (2000) Survey and summary transcription by RNA polymerases I and III. Nucleic Acids Res 28:1283–1298

    Article  PubMed  CAS  Google Scholar 

  5. Cairns CA, White RJ (1998) p53 is a general repressor of RNA polymerase III transcription. EMBO J 17:3112–3123

    Article  PubMed  CAS  Google Scholar 

  6. Veras I, Rosen EM, Schramm L (2009) Inhibition of RNA polymerase III transcription by BRCA1. J Mol Biol 387:523–531

    Article  PubMed  CAS  Google Scholar 

  7. Goodfellow SJ, Graham EL, Kantidakis T, Marshall L, Coppins BA, Oficjalska-Pham D, Gérard M, Lefebvre O, White RJ (2008) Regulation of RNA polymerase III transcription by Maf1 in mammalian cells. J Mol Biol 378:481–491

    Article  PubMed  CAS  Google Scholar 

  8. Jacob J, Cabarcas S, Veras I, Zaveri N, Schramm L (2007) The green tea component EGCG inhibits RNA polymerase III transcription. Biochem Biophys Res Commun 360:778–783

    Article  PubMed  CAS  Google Scholar 

  9. Tétreault M, Choquet K, Orcesi S, Tonduti D, Balottin U, Teichmann M, Fribourg S, Schiffmann R, Brais B, Vanderver A, Bernard G (2011) Recessive mutations in POLR3B, encoding the second largest subunit of Pol III, cause a rare hypomyelinating leukodystrophy. Am J Hum Genet 89:652–655

    Article  PubMed  Google Scholar 

  10. Yee NS, Gong W, Huang Y, Lorent K, Dolan AC, Maraia RJ, Pack M (2007) Mutation of RNA Pol III subunit rpc2/polr3b leads to deficiency of subunit Rpc11 and disrupts zebrafish digestive development. PLoS Biol 5:e312

    Article  PubMed  Google Scholar 

  11. Karin M, Liu Z, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9:240–246

    Article  PubMed  CAS  Google Scholar 

  12. Thépot D, Weitzman JB, Barra J, Segretain D, Stinnakre MG, Babinet C, Yaniv M (2000) Targeted disruption of the murine junD gene results in multiple defects in male reproductive function. Development 127:143–153

    PubMed  Google Scholar 

  13. Jochum W, Passegué E, Wagner EF (2001) AP-1 in mouse development and tumorigenesis. Oncogene 20:2401–2412

    Article  PubMed  CAS  Google Scholar 

  14. Behrens A, Sibilia M, Wagner EF (1999) Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 21:326–329

    Article  PubMed  CAS  Google Scholar 

  15. Kovary K, Bravo R (1991) The jun and fos protein families are both required for cell cycle progression in fibroblasts. Mol Cell Biol 11:4466–4472

    PubMed  CAS  Google Scholar 

  16. Wang H, Xie Z, Scott RE (1997) Induction of AP-1 activity associated with c-Jun and JunB is required for mitogenesis induced by insulin and vanadate in SV40-transformed 3T3T cells. Mol Cell Biochem 168:21–30

    Article  PubMed  CAS  Google Scholar 

  17. Brown JR, Nigh E, Lee RJ, Ye H, Thompson MA, Saudou F, Pestell RG, Greenberg ME (1998) Fos family members induce cell cycle entry by activating cyclin D1. Mol Cell Biol 18:5609–5619

    PubMed  CAS  Google Scholar 

  18. Schreiber M, Kolbus A, Piu F, Szabowski A, Möhle-Steinlein U, Tian J, Karin M, Angel P, Wagner EF (1999) Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev 13:607–619

    Article  PubMed  CAS  Google Scholar 

  19. Hennigan RF, Stambrook PJ (2001) Dominant negative c-jun inhibits activation of the cyclin D1 and cyclin E kinase complexes. Mol Biol Cell 12:2352–2363

    PubMed  CAS  Google Scholar 

  20. Xiong Y, Hannon G, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704

    Article  PubMed  CAS  Google Scholar 

  21. Ameyar-Zazoua M, Wisniewska MB, Bakiri L, Wagner EF, Yaniv M, Weitzman JB (2005) AP-1 dimers regulate transcription of the p14/p19ARF tumor suppressor gene. Oncogene 24:2298–2306

    Article  PubMed  CAS  Google Scholar 

  22. Bakiri L, Lallemand D, Bossy-Wetzel E, Yaniv M (2000) Cell cycle-dependent variations in c-Jun and JunB phosphorylation: a role in the control of cyclin D1 expression. EMBO J 19:2056–2068

    Article  PubMed  CAS  Google Scholar 

  23. Passegue E, Wagner EF (2000) JunB suppresses cell proliferation by transcriptional activation of p16INK4a expression. EMBO J 19:2969–2979

    Article  PubMed  CAS  Google Scholar 

  24. Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, Lowe SW (2002) Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1:289–298

    Article  PubMed  CAS  Google Scholar 

  25. Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2:103–112

    Article  PubMed  CAS  Google Scholar 

  26. Gasco M, Shami S, Crook T (2002) The p53 pathway in breast cancer. Breast Cancer Res 4:70–76

    Article  PubMed  CAS  Google Scholar 

  27. Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL (1999) Disruption of the ARF–Mdm2–p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Gene Dev 13:2658–2669

    Article  PubMed  CAS  Google Scholar 

  28. Leach FS, Tokino T, Meltzer P, Burrell M, Oliner JD, Smith S, Hill DE, Sidransky D, Kinzler KW, Vogelstein B (1993) p53 Mutation and MDM2 amplification in human soft tissue sarcomas. Cancer Res 53:2231–2234

    PubMed  CAS  Google Scholar 

  29. Bodner S, Minna J, Jensen S, D’amico D, Carbone D, Mitsudomi T, Fedorko J, Buchhagen D, Nau M, Gazdar A (1992) Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation. Oncogene 7:743–749

    PubMed  CAS  Google Scholar 

  30. Reifenberger J, Ring GU, Gies U, Cobbers L, Oberstrass J, An HX, Niederacher D, Wechsler W, Reifenberger G (1996) Analysis of p53 mutation and epidermal growth factor receptor amplification in recurrent gliomas with malignant progression. J Neuropathol Exp Neurol 55:822–831

    Article  PubMed  CAS  Google Scholar 

  31. Tornaletti S, Pfeifer GP (1994) Slow repair of pyrimidine dimers at p53 mutation hotspots in skin cancer. Science 263:1436–1438

    Article  PubMed  CAS  Google Scholar 

  32. Hamelin R, Laurent-Puig P, Olschwang S, Jego N, Asselain B, Remvikos Y, Girodet J, Salmon R, Thomas G (1994) Association of p53 mutations with short survival in colorectal cancer. Gastroenterology 106:42–48

    PubMed  CAS  Google Scholar 

  33. Tolbert D, Lu X, Yin C, Tantama M, Van Dyke T (2002) p19ARF is dispensable for oncogenic stress-induced p53-mediated apoptosis and tumor suppression in vivo. Mol Cell Biol 22:370–377

    Article  PubMed  CAS  Google Scholar 

  34. Lomazzi M, Moroni MC, Jensen MR, Frittoli E, Helin K (2002) Suppression of the p53- or pRB-mediated G1 checkpoint is required for E2F-induced S-phase entry. Nat Genet 31:190–194

    Article  PubMed  CAS  Google Scholar 

  35. Schlereth K, Beinoraviciute-Kellner R, Zeitlinger MK, Bretz AC, Sauer M, Charles JP, Vogiatzi F, Leich E, Samans B, Eilers M (2010) DNA binding cooperativity of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 38:356–368

    Article  PubMed  CAS  Google Scholar 

  36. Goloudina A, Mazur S, Appella E, Garrido C, Demidov O (2012) Wip1 sensitizes p53-negative tumors to apoptosis by regulating the Bax/Bcl-xL ratio. Cell Cycle 11:1883–1887

    Article  PubMed  CAS  Google Scholar 

  37. Shen E, Lei Y, Liu Q, Zheng Y, Song C, Marc J, Wang Y, Sun L, Liang Q (2009) Identification and characterization of INMAP, a novel interphase nucleus and mitotic apparatus protein that is involved in spindle formation and cell cycle progression. Exp Cell Res 315:1100–1116

    Article  PubMed  CAS  Google Scholar 

  38. Peterhaensel C, Obermaier I, Rueger B (1998) Nonradioactive northern blot analysis of plant RNA and the application of different haptens for reprobing. Anal Biochem 264:279–283

    Article  PubMed  CAS  Google Scholar 

  39. Wei Y, Shen E, Zhao N, Liu Q, Fan J, Marc J, Wang Y, Sun L, Liang Q (2008) Identification of a novel centrosomal protein CrpF46 involved in cell cycle progression and mitosis. Exp Cell Res 314:1693–1707

    Article  PubMed  CAS  Google Scholar 

  40. Chen J, Ng SM, Chang C, Zhang Z, Bourdon J-C, Lane DP, Peng J (2009) p53 isoform Δ113p53 is a p53 target gene that antagonizes p53 apoptotic activity via BclxL activation in zebrafish. Genes Dev 23:278–290

    Article  PubMed  CAS  Google Scholar 

  41. White RJ (2004) RNA polymerase III transcription and cancer. Oncogene 23:3208–3216

    Article  PubMed  CAS  Google Scholar 

  42. Marshall L, White RJ (2008) Non-coding RNA production by RNA polymerase III is implicated in cancer. Nat Rev Cancer 8:911–914

    Article  PubMed  CAS  Google Scholar 

  43. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  44. Lee W-T, Chang C-W (2010) Bax is upregulated by p53 signal pathway in the SPE B-induced apoptosis. Mol Cell Biochem 343:271–279

    Article  PubMed  CAS  Google Scholar 

  45. Jee Y-H, Jeong W-I, Kim T-H, Hwang I-S, Ahn M-J, Joo H-G, Hong S-H, Jeong K-S (2005) p53 and cell-cycle-regulated protein expression in small intestinal cells after fast-neutron irradiation in mice. Mol Cell Biochem 270:21–28

    Article  PubMed  CAS  Google Scholar 

  46. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  PubMed  CAS  Google Scholar 

  47. Miled C, Pontoglio M, Garbay S, Yaniv M, Weitzman JB (2005) A genomic map of p53 binding sites identifies novel p53 targets involved in an apoptotic network. Cancer Res 65:5096–5104

    Article  PubMed  CAS  Google Scholar 

  48. Verde P, Casalino L, Talotta F, Yaniv M, Weitzman JB (2007) Deciphering AP-1 function in tumorigenesis. Cell Cycle 6:2632–2639

    Article  Google Scholar 

  49. Schramek D, Kotsinas A, Meixner A, Wada T, Elling U, Pospisilik JA, Neely GG, Zwick RH, Sigl V, Forni G (2011) The stress kinase MKK7 couples oncogenic stress to p53 stability and tumor suppression. Nat Genet 43:212–219

    Article  PubMed  CAS  Google Scholar 

  50. Tornatore L, Marasco D, Dathan N, Vitale RM, Benedetti E, Papa S, Franzoso G, Ruvo M, Monti SM (2008) Gadd45β forms a homodimeric complex that binds tightly to MKK7. J Mol Biol 378:97–111

    Article  PubMed  CAS  Google Scholar 

  51. Tornatore L, Monti SM, Marasco D, Dathan N, Vitale RM, Benedetti E, Pedone C, Papa S, Franzoso G, Ruvo M 2009 Gadd45β dimerization does not affect MKK7 binding. Peptides for Youth 367–368

  52. Mahata S, Bharti AC, Shukla S, Tyagi A, Husain SA, Das BC (2011) Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells. Mol Cancer 10:39

    Article  PubMed  CAS  Google Scholar 

  53. Rajput S, Mandal M (2012) Antitumor promoting potential of selected phytochemicals derived from spices: a review. Eur J Cancer Prev 21:205–215

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (no. 30971470) to Q. J. Liang, Beijing Natural Science Foundation (no. 5122017) to Q. J. Liang, the open fund of Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education to Y. B. Zheng and the open fund of Beijing Key Laboratory of Gene Resource and Molecular Development to Y. L. Zhou. We thank Dr. Yue Wang (A-STAR, Singapore) and Dr. Jian Kuang (University of Texas M.D., Anderson Cancer Center, USA) for critical reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Qianjin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yunlei, Z., Zhe, C., Yan, L. et al. INMAP, a novel truncated version of POLR3B, represses AP-1 and p53 transcriptional activity. Mol Cell Biochem 374, 81–89 (2013). https://doi.org/10.1007/s11010-012-1507-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1507-4

Keywords

Navigation