Skip to main content

Advertisement

Log in

Association between polymorphisms of eNOS and GPx-1 genes, activity of free-radical processes and in-stent restenosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Our aim was to examine correlations between polymorphisms in five antioxidant enzymes genes, activity of free-radical processes, and the risk of restenosis after coronary artery stenting with bare metal stents (BMS). A total of 101 male patients who underwent intracoronary stenting using BMS and coronary angiography follow-up of 6 months were enrolled in: group with in-stent restenosis (n = 44) and without restenosis (n = 57). The content of lipoperoxides and malondialdehyde (MDA) in Low-density lipoprotein (LDL), activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) in erythrocytes, and genotypes polymorphisms of the CAT gene (−262C/T), paraoxonase-1 (PON-1) gene (163T/A and 575A/G), endothelial nitric oxide synthase (eNOS) gene (298G/T (rs#1799983) and −786T/C), GPx-1 gene (599C/T (rs#1050450)), and glutathione-S-transferase (GSTP) gene (313A/G) were determined. In carriers of the minor allele of 599C/T polymorphism of the GPx-1 gene, activity of GPx in erythrocytes was lower by 17 % than in wild allele homozygotes, while the content of lipoperoxides in LDL was higher by 74 %. T-allele of 599C/T polymorphism of the GPx-1 gene (OR = 2.9; 95 % CI: 1.23–6.82) and T-allele of 298G/T polymorphism of the eNOS gene (OR = 2.79; 95 % CI: 1.17–6.66) were associated with the risk of in-stent restenosis. Minor alleles of polymorphisms 298G/T of the eNOS gene and 599C/T of the GPx-1 gene are associated with an increased risk of in-stent restenosis. Minor allele of the GPx-1 gene 599C/T polymorphism leads to a decrease of the GPx activity and increase of the activity of free-radical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Spertus JA, Nerella R, Kettlekamp R, House J, Marso S, Borkon MA, Rumsfeld JS (2005) Risk of restenosis and health status outcomes for patients undergoing percutaneous coronary intervention versus coronary artery bypass graft surgery. Circulation 111:768–773. doi:10.1161/01.CIR.0000155242.70417.60

    Article  PubMed  Google Scholar 

  2. Kastrati A, Koch W, Gawaz M, Mehilli J, Böttiger C, Schömig K, von Beckerath N, Schömig A (2000) PLA polymorphism of glycoprotein IIIa and risk of adverse events after coronary stent placement. J Am Coll Cardiol 36:84–89

    Article  PubMed  CAS  Google Scholar 

  3. Kastrati A, Koch W, Berger PB, Mehilli J, Stephenson K, Neumann F-J, von Beckerath N, Böttiger C, Duff GW, Schömig A (2000) Protective role against restenosis from an interleukin-1 receptor antagonist gene polymorphism in patients treated with coronary stenting. J Am Coll Cardiol 36:2168–2173

    Article  PubMed  CAS  Google Scholar 

  4. Wijpkema JS, Van Haelst PL, Monraats PS, Bruinenberg M, Zwinderman AH, Zijlstra F, van der Steege G, de Winter RJ, Doevendans PA, Waltenberger J, Jukema JW, Tio RA (2006) Restenosis after percutaneous coronary intervention is associated with the angiotensin-II type-1 receptor 1166A/C polymorphism but not with polymorphisms of angiotensin-converting enzyme, angiotensin-II receptor, angiotensinogen or hemeoxygenase-1. Pharmacogenet Genomics 16:331–337

    Article  PubMed  CAS  Google Scholar 

  5. Galluccio E, Piatti PM, Citterio L, Lucotti PCG, Setola E, Cassina L, Oldani M, Zavaroni I, Bosi E, Colombo A, Alfieri O, Casari G, Reaven GM, Monti LD (2008) Hyperinsulinemia and impaired leptin: adiponectin ratio associate with endothelial nitric oxide synthase polymorphisms in patients with in-stent restenosis. Am J Physiol Endocrinol Metab 294:E978–E986. doi:10.1152/ajpendo.00003.2008

    Article  PubMed  CAS  Google Scholar 

  6. Azevedo LC, Pedro MA, Souza LC, de Souza HP, Janiszewski M, da Luz PL, Laurindo FRM (2000) Oxidative stress as a signaling mechanism of the vascular response to injury: the redox hypothesis of restenosis. Cardiovasc Res 47:436–445. doi:10.1016/S0008-6363(00)00091-2

    Article  PubMed  CAS  Google Scholar 

  7. Hoffmann R, Mintz GS (2000) Coronary in-stent restenosis—predictors, treatment and prevention. Eur Heart J 21:1739–1749. doi:10.1053/euhj.2000.2153

    Article  PubMed  CAS  Google Scholar 

  8. Iuliano L, Colavita AR, Leo R, Pratico D, Violi F (1997) Oxygen free radicals and platelet activation. Free Radic Biol Med 22:999–1006

    Article  PubMed  CAS  Google Scholar 

  9. Fortuno A, San Jose G, Moreno MU, Díez J, Zalba G (2005) Oxidative stress and vascular remodelling. Exp Physiol 90:457–462. doi:10.1113/expphysiol.2005.030098

    Article  PubMed  CAS  Google Scholar 

  10. Zhou XF, Cui J, De Stefano Al, Chazaro I, Farrer LA, Manolis AJ, Gavras H, Baldwin CT (2005) Polymorphisms in the promoter region of catalase gene and essential hypertension. Dis Markers 21:3–7

    PubMed  CAS  Google Scholar 

  11. Bhattacharyya T, Nicholls SJ, Topol EJ, Zhang R, Yang X, Schmitt D, Fu X, Shao M, Brennan DM, Ellis SG, Brennan M-L, Allayee H, Lusis AJ, Hazen SL (2008) Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. JAMA 299:1265–1276. doi:10.1001/jama.299.11.1265

    Article  PubMed  CAS  Google Scholar 

  12. Van Himbergen TM, Roest M, Graaf J, Jansen EHJM, Hattori H, Kastelein JJP, Voorbij HAM, Stalenhoef AFH, van Tits LJH (2005) Indications that paraoxonase-1 contributes to plasma high density lipoprotein levels in familial hypercholesterolemia. J Lipid Res 46:445–451. doi:10.1194/jlr.M400052-JLR200

    Article  PubMed  Google Scholar 

  13. Colombo MG, Paradossi U, Andreassi MG, Botto N, Manfredi S, Masetti S, Biagini A, Clerico A (2003) Endothelial nitric oxide synthase gene polymorphisms and risk of coronary artery disease. Clin Chem 49:389–395. doi:10.1373/49.3.389

    Article  PubMed  CAS  Google Scholar 

  14. Schnabel R, Lackner KJ, Rupprecht HJ, Espinola-Klein C, Torzewski M, Lubos E, Bickel C, Cambien F, Tiret L, Münzel T, Blankenberg S (2005) Glutathione peroxidase-1 and homocysteine for cardiovascular risk prediction. J Am Coll Cardiol 45:1631–1637. doi:10.1016/j.jacc.2005.02.053

    Article  PubMed  CAS  Google Scholar 

  15. Nemoto M, Nishimura R, Sasaki T, Hiki Y, Miyashita Y, Nishioka M, Fujimoto K, Sakuma T, Ohashi T, Fukuda K, Eto Y, Tajima N (2007) Genetic association of glutathione peroxidase-1 with coronary artery calcification in type 2 diabetes: a case control study with multi-slice computed tomography. Cardiovasc Diabetol 6:23–27

    Article  PubMed  Google Scholar 

  16. Amplatz K, Formanek G, Stranger P, Wilson W (1967) Mechanics of selective coronary artery catheterization via femoral approach. Radiology 89:1040–1047. doi:10.1148/89.6.1040

    PubMed  CAS  Google Scholar 

  17. Judkins MP (1967) Selective coronary arteriography. Part I. A percutaneous transfemoral technic. Radiology 89:815–824. doi:10.1148/89.5.815

    PubMed  CAS  Google Scholar 

  18. Tertov VV, Kaplun VV, Dvoryantsev SN, Orekhov AN (1995) Apolipoprotein B-bound lipids as a marker for evaluation of low density lipoprotein oxidation in vivo. Biochem Biophys Res Commun 214:608–613

    Article  PubMed  CAS  Google Scholar 

  19. Lankin VZ, Lisina MO, Arzamastseva NE, Konovalova GG, Nedosugova LV, Kaminnyi AI, Tikhaze AK, Ageev AK, Kukharchuk VV, Belenkov YN (2005) Oxidative stress in atherosclerosis and diabetes. Bull Exp Biol Med 140:41–43

    Article  PubMed  CAS  Google Scholar 

  20. Nourooz-Zadeh J, Tajaddini-Sarmadi J, Wolff SP (1994) Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem 220:403–409

    Article  PubMed  CAS  Google Scholar 

  21. Boldyrev AA, Yuneva MO, Sorokina EV, Kramarenko GG, Fedorova TN, Konovalova GG, Lankin VZ (2001) Antioxidant systems in tissues of senescence accelerated mice. Biochemistry (Mosc) 66:1157–1163

    Article  CAS  Google Scholar 

  22. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  23. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 57:289–300

    Google Scholar 

  24. Lowe HC, Oesterle SN, Khachigian LM (2002) Coronary in-stent restenosis: current status and future strategies. J Am Coll Cardiol 39:183–193

    Article  PubMed  Google Scholar 

  25. Inouye M, Mio T, Sumino K (1999) Link between glycation and lipooxidation in red blood cells in diabetes. Clin Chim Acta 285:35–44

    Article  PubMed  CAS  Google Scholar 

  26. Ravn-Haren G, Olsen A, Tjonneland A, Dragsted LO, Nexø BA, Wallin H, Overvad K, Raaschou-Nielsen O, Vogel U (2006) Association between GPx-1 Pro198Leu polymorphism, erythrocyte GPx activity, alcohol consumption and breast cancer risk in a prospective cohort study. Carcinogenesis 27:820–825. doi:10.1093/carcin/bgi267

    Article  PubMed  CAS  Google Scholar 

  27. Hamanishi T, Fyryta H, Kato H, Doi A, Tamai M, Shimomura H, Sakagashira S, Nishi M, Sasaki H, Sanke T, Nanjo K (2004) Functional variants in the glutathione peroxidase-1 (GPx-1) gene are associated with increased intimamedia thickness of carotid arteries and risk of macrovascular disease in Japanese type 2 diabetic patients. Diabetes 53:2455–2460. doi:10.2337/diabetes.53.9.2455

    Article  PubMed  CAS  Google Scholar 

  28. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide and peroxynitrite: the good, the bad and ugly. Am J Physiol 5:1424–1437

    Google Scholar 

  29. Blankenberg S, Rupprecht HJ, Bickel C, Torzewski M, Hafner G, Tiret L, Smieja M, Cambien F, Meyer J, Lackner KJ, AtheroGene Investigators (2003) Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med 349:1605–1613

    Article  PubMed  CAS  Google Scholar 

  30. Suzuki T, Okumura K, Sone T, Kosokabe T, Tsuboi H, Kondo J, Mukawa H, Kamiya H, Tomida T, Imai H, Matsui H, Hayakawa T (2002) The Glu298Asp polymorphism in endothelial nitric oxide synthase gene is associated with coronary in-stent restenosis. Int J Cardiol 86:71–76

    Article  PubMed  Google Scholar 

  31. Gomma AH, Elrayess MA, Knight CJ, Hawe E, Fox KM, Humphries SE (2002) The endothelial nitric oxide synthase (Glu298Asp and −786T>C) gene polymorphism are associated with coronary in-stent restenosis. Eur Heart J 23:1955–1962. doi:10.1053/euhj.2002.3400

    Article  PubMed  CAS  Google Scholar 

  32. Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83:1774–1777. doi:10.1172/JCI114081

    Article  PubMed  CAS  Google Scholar 

  33. Griendling KK, Fitzgerald GF (2003) Oxidative stress and cardiovascular injury part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108:1912–1916. doi:10.1161/01.CIR.0000093660.86242.BB

    Article  PubMed  Google Scholar 

  34. Jain SK, Palmer M (1997) The effects of oxygen radicals metabolites and vitamin E on glycosylation of proteins. Free Radic Biol Med 22:593–596

    Article  PubMed  CAS  Google Scholar 

  35. Tesauro M, Tompson WC, Rogliani P, Qi L, Chaudhary PP, Moss J (2000) Intracellular processing of endothelial nitric oxide synthase isoforms associated with differences in severity of cardiopulmonary disease: cleavage of proteins with aspartate vs. glutamate at position 298. PNAS 97:2832–2835. doi:10.1073/pnas.97.6.2832

    Article  PubMed  CAS  Google Scholar 

  36. Khalkhai-Ellis Z, Hendrix MJ (2003) Nitric oxide regulation of maspin expression in normal mammary epithelial and breast cancer cells. Am J Pathol 162:1411–1417

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of Russian Foundation for Basic Research (06-04-49691-a). We thank Dr. Vadim Z. Lankin and Dr. Alla K. Tikhaze for their support of some biochemistry research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Shuvalova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shuvalova, Y.A., Kaminnyi, A.I., Meshkov, A.N. et al. Association between polymorphisms of eNOS and GPx-1 genes, activity of free-radical processes and in-stent restenosis. Mol Cell Biochem 370, 241–249 (2012). https://doi.org/10.1007/s11010-012-1419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1419-3

Keywords

Navigation