Skip to main content
Log in

MnSOD, CAT and GPx-3 genetic polymorphisms in coronary artery disease

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In this study, we aimed to determine the gene polymorphisms of antioxidant enzymes that determine or affect antioxidant activity in the occurrence of the disease and/or complications during and after the surgery in patients who were decided to undergo coronary artery bypass surgery due to coronary artery disease. Blood samples taken before operation in 26 coronary artery patients who were decided to be operated according to the international procedure and the phenol/chloroform method was used to isolate DNA. DNA samples were amplified by using polymerase chain reaction (PCR) method with specific primers for MnSOD, CAT, GPx-3 antioxidant gene regions. As a result of the increasing process, the PCR products for the purpose of determining gene polymorphism, NGOMIV SMA f and BSA I restriction enzymes were used for MNSOD, CAT and GPx-3 gene region, respectively. Allele frequencies were determined and compared by Chi square test. VV (46.15%) and VA (53.85%) genotype for MnSOD region, i TT (22.22%), TC (16.67%) and CC (61.11%) genotype for CAT region, and CC (12.50%), TC (25%) and TT (62.50%) genotypes for GPx-3 region were obtained. While there was no statistically significant significance in terms of genotypes obtained in MnSOD and GPx-3 gene regions (P > 0.05), a significant difference was found in the CAT gene region in terms of genotypes (P < 0.01). Although oxidative stress is important in relation to cardiovascular diseases and postoperative complications, virtually no study of antioxidant enzymes in gene polymorphism are included in the literature. Work is lacking in relation to the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Grundy SM, Pasternak R, Greenland P, Smith S Jr, Fuster V (1999) Assesment of cardiovascular risk by use of multiple risk factor assessment equation. A statement for healthcare professionals from the American Heart Association and the American College of cardiology. Circulation 100:1481–1492

    Article  CAS  PubMed  Google Scholar 

  2. Harrison D, Griendling KG, Landmesser U, Hornig B, Drexlar H (2003) Role of oxidative stress in atherosclerosis. Am J Cardio 91:7–11

    Article  Google Scholar 

  3. Blankenberg S, Rupprechi MJ, Bickel C, Torzewski M, Hafner G, Tiret L et al (2003) Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med 349(17):1605–1613

    Article  CAS  PubMed  Google Scholar 

  4. Cohn LH (2003) Fifty years of open heart surgery. Circulation 107:2168–2170

    Article  PubMed  Google Scholar 

  5. Lazar HL (2014) Should off-pump coronary artery bypass surgery be abandoned: a potential solution. J Thorac Cardiovasc Surg 148(6):2475–2476

    Article  PubMed  Google Scholar 

  6. Barzegar AOM, Sciesser CH, Taylor MK (2014) New reagents for detecting free radicals and oxidative stress. Org Blomol Chem 12(35):6757–6766

    Article  Google Scholar 

  7. Gupta RK, Patel AK, Shah N, Chaudhary AK, Jha UK, Yadav UC, Gupta PK, Pakuval U (2014) Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac Cancer Prev 15(11):4405–4409

    Article  Google Scholar 

  8. Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591

    Article  CAS  PubMed  Google Scholar 

  10. Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10:18–25

    Article  CAS  Google Scholar 

  11. Shukla V, Mishra SK, Pant HC (2011) Oxidative stress in neurodegeneration. Adv Pharmacol Scl 572–634

  12. Paravicini TM, Touyz RM (2006) Redox signaling in hypertension. Cardiovasc Res 247–258

  13. Haigis MC, Yankner BA (2010) The aging stress response. Mol Cell 40(2):333–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H et al (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320: 661–664

    Article  CAS  PubMed  Google Scholar 

  15. Pearson TA, Mensah GA, Alexander RW et al (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the centers for disease control and prevention ant the American Heart Association. Circulation 107(3):499–511

    Article  PubMed  Google Scholar 

  16. Doğan A, Türker FS (2017) Cardiopulmonary bypass and oxidative stress. Chem Res J 2(6):156–162

    Google Scholar 

  17. Batinic-Haberle I, Reboucas JS, Spasojevich I (2010) Superoxide dismutase mimics: chemistry, pharmacology and therapeutic potential. Antioxid Redox Signal 13:877–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ambrosone CB, Freudenheim JL, Thompson PA, Browman E, Vena JE, Marshall JR, Graham S, Laughlin R, Nemoto T, Shields PG (1999) Manganase superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, risk of breast cancer. Cancer Res 59:602–606

    CAS  PubMed  Google Scholar 

  19. Zhou XF, Cui J, De S Al, Chazaro I, Farrer LA, Manolis AJ, Gavras H, Baldwin CT (2005) Polymorphisms in the promoter region of catalase gene and essential hypertension. Dis Markers 21:3–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shuvalova YA, Kaminnyi AI, Meshkov AN, Shirokov RO, Samko AN (2012) Association between polymorphisms of eNOS and GPx-1 genes activity of free-radical processes an in-stent restenosis. Mol Cell Biochem 370:241–249

    Article  CAS  PubMed  Google Scholar 

  21. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Pres, Cold Spring Harbor. pp 9.16–9.19

    Google Scholar 

  22. Forsberg L, Lyrenas L, Faire UD, Morgenstern R (2001) A common functional C–T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels. Free Radical Biol Med 30(5):500–505

    Article  CAS  Google Scholar 

  23. Voetsch B, Jin RC, Bierl C, Benke KS, Kenet G, Simioni P, Ottaviano F, Damasceno BP, Annichino-Bizacchi JM, Handy DE, Loscalzo J (2007) Promoter polymorphisms in the plasma glutathione peroxidase (GPx-3) gene: a novel risk factor for arterial ischemic stroke among young adults and children. Stroke 38(1):41–49

    Article  CAS  PubMed  Google Scholar 

  24. Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucl Acids Res 19:4008

    Article  CAS  PubMed  Google Scholar 

  25. Ohata T, Mitsuno M, Yamamura M, Tanaka H, Kobayashi Y, Ryomoto M, Yoshioka Y, Miyomoto Y (2007) Minimal cardiopulmonary bypass attenuates neutrophil activation and cytokine release in coronary artery bypass grafting. J Artif Organs 10:92–95

    Article  CAS  PubMed  Google Scholar 

  26. Karahalil B, Kesimci E, Emerce E, Gumus T, Kanbak O (2011) The impact of OGG1, MTH1 and MnSOD gene polymorphisms on 8-hydroxy-2′-deoxyguanosine and cellular superoxide dismutase activity in myocardial ischemia-reperfusion. Mol Biol Rep 38:2427–2435

    Article  CAS  PubMed  Google Scholar 

  27. Neomoto M, Nishimura R, Sasaki T, Hiki Y, Miyashita Y, Nishioka M, Fujimoto K, Sakuma T, Ohashi T, Fukuda K, Eto Y, Tajima N (2007) Genetic association of glutathione peroxidase-1 with coronary artery calcification in type 2 diabetes: a case control study with multi-slice computed tomography. Cardiovasc Diabetol 6:23–27

    Article  CAS  Google Scholar 

  28. Wickremasinghe D, Peiris H, Chandrasena LG, Senaratne V, Perera R (2016) Case control feasibility study assessing the association between severity of coronary artery disease with Glutathione Peroxidase 1 (GPX-1) and GPX-1 polymorphism. BMC Cardiovasc Disord 16:111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Türker FS, Doğan A, Ozan G, Kıbar K, Erışır M (2016) Change in free radical and antioxidant enzyme levels in patients undergoing open heart surgery with cardiopulmonary bypass. Oxid Med Cell Longev 2016:1783728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Venardos KM, Perkins A, Headrick J, Kaye DM (2007) Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review. Curr Med Chem 14:1539–1549

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by Cumhuriyet Üniversitesi (Grant no 1) and Bitlis Eren Üniversitesi (Grant no 2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayşe Doğan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doğan, A., Özşensoy, Y. & Türker, F.S. MnSOD, CAT and GPx-3 genetic polymorphisms in coronary artery disease. Mol Biol Rep 46, 841–845 (2019). https://doi.org/10.1007/s11033-018-4539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4539-3

Keywords

Navigation