Skip to main content
Log in

Akap200 suppresses the effects of Dv-cbl expression in the Drosophila eye

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The Drosophila melanogaster orthologue of the c-Cbl proto-oncogene acts to downregulate signalling from receptor tyrosine kinases by enhancing endocytosis of activated receptors. Expression of an analogue of the C-terminally truncated v-Cbl oncogene, Dv-cbl, in the developing Drosophila eye conversely leads to excess signalling and disruption to the well-ordered adult compound eye. Co-expression of activated Ras with Dv-cbl leads to a severe disruption of eye development. We have used a transposon-based inducible expression system to screen for molecules that can suppress the Dv-cbl phenotype and have identified an allele that upregulates the A-kinase anchoring protein, Akap200. Overexpression of Akap200 not only suppresses the phenotype caused by Dv-cbl expression, but also the severe disruption to eye development caused by the combined expression of Dv-cbl and activated Ras. Akap200 is also endogenously expressed in the developing Drosophila eye at a level that modulates the effects of excessive signalling caused by expression of Dv-cbl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bache KG, Slagsvold T, Stenmark H (2004) Defective downregulation of receptor tyrosine kinases in cancer. EMBO J 23:2707–2712

    Article  PubMed  CAS  Google Scholar 

  2. Joazeiro CAP, Wing SS, Huang HK, Leverson JD, Hunter T, Liu YC (1999) The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286:309–312

    Article  PubMed  CAS  Google Scholar 

  3. Waterman H, Levkowitz G, Alroy I, Yarden Y (1999) The RING finger of c-Cbl mediates desensitization of the epidermal growth factor receptor. J Biol Chem 274:22151–22154

    Article  PubMed  CAS  Google Scholar 

  4. Langdon WY, Hartley JW, Klinken SP, Ruscetti SK, Morse HCd (1989) v-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas. Proc Natl Acad Sci USA 86:1168–1172

    Article  PubMed  CAS  Google Scholar 

  5. Swaminathan G, Tsygankov AY (2006) The Cbl family proteins: ring leaders in regulation of cell signaling. J Cell Physiol 209:21–43

    Article  PubMed  CAS  Google Scholar 

  6. Ettenberg SA, Keane MM, Nau MM, Frankel M, Wang LM, Pierce JH, Lipkowitz S (1999) cbl-b inhibits epidermal growth factor receptor signaling. Oncogene 18:1855–1866

    Article  PubMed  CAS  Google Scholar 

  7. Lupher ML Jr, Andoniou CE, Bonita D, Miyake S, Band H (1998) The c-Cbl oncoprotein. Int J Biochem Cell Biol 30:439–444

    Article  PubMed  CAS  Google Scholar 

  8. Hime GR, Abud HE, Garner B, Harris KL, Robertson H (2001) Dynamic expression of alternate splice forms of D-cbl during embryogenesis. Mech Dev 102:235–238

    Article  PubMed  CAS  Google Scholar 

  9. Hime GR, Dhungat MP, Ng A, Bowtell DD (1997) D-Cbl, the Drosophila homologue of the c-Cbl proto-oncogene, interacts with the Drosophila EGF receptor in vivo, despite lacking C-terminal adaptor binding sites. Oncogene 14:2709–2719

    Article  PubMed  CAS  Google Scholar 

  10. Pai LM, Barcelo G, Schupbach T (2000) D-cbl, a negative regulator of the Egfr pathway, is required for dorsoventral patterning in Drosophila oogenesis. Cell 103:51–61

    Article  PubMed  CAS  Google Scholar 

  11. Robertson H, Hime GR, Lada H, Bowtell DD (2000) A Drosophila analogue of v-Cbl is a dominant-negative oncoprotein in vivo. Oncogene 19:3299–3308

    Article  PubMed  CAS  Google Scholar 

  12. Yoon CH, Lee J, Jongeward GD, Sternberg PW (1995) Similarity of sli-1, a regulator of vulval development in C. elegans, to the mammalian proto-oncogene c-cbl. Science 269:1102–1105

    Article  PubMed  CAS  Google Scholar 

  13. Freeman M (1996) Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87:651–660

    Article  PubMed  CAS  Google Scholar 

  14. Wolff T, Ready DF (1993) Pattern formation in the Drosophila retina. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbor Press, Plainview, pp 1277–1326

    Google Scholar 

  15. Chang HC, Karim FD, O’Neill EM, Rebay I, Solomon NM, Therrien M, Wassarman DA, Wolff T, Rubin GM (1994) Ras signal transduction pathway in Drosophila eye development. Cold Spring Harb Symp Quant Biol 59:147–153

    Article  PubMed  CAS  Google Scholar 

  16. Karim FD, Chang HC, Therrien M, Wassarman DA, Laverty T, Rubin GM (1996) A screen for genes that function downstream of Ras1 during Drosophila eye development. Genetics 143:315–329

    PubMed  CAS  Google Scholar 

  17. Therrien M, Chang HC, Solomon NM, Karim FD, Wassarman DA, Rubin GM (1995) KSR, a novel protein kinase required for RAS signal transduction. Cell 83:879–888

    Article  PubMed  CAS  Google Scholar 

  18. Toba G, Ohsako T, Miyata N, Ohtsuka T, Seong KH, Aigaki T (1999) The gene search system. A method for efficient detection and rapid molecular identification of genes in Drosophila melanogaster. Genetics 151:725–737

    PubMed  CAS  Google Scholar 

  19. Rorth P, Szabo K, Bailey A, Laverty T, Rehm J, Rubin GM, Weigmann K, Milan M, Benes V, Ansorge W, Cohen SM (1998) Systematic gain-of-function genetics in Drosophila. Development 125:1049–1057

    PubMed  CAS  Google Scholar 

  20. Huang AM, Rubin GM (2000) A misexpression screen identifies genes that can modulate RAS1 pathway signaling in Drosophila melanogaster. Genetics 156:1219–1230

    PubMed  CAS  Google Scholar 

  21. Carnegie GK, Means CK, Scott JD (2009) A-kinase anchoring proteins: from protein complexes to physiology and disease. IUBMB Life 61:394–406

    Article  PubMed  CAS  Google Scholar 

  22. Greenwald EC, Saucerman JJ (2011) Bigger, better, faster: principles and models of AKAP anchoring protein signaling. J Cardiovasc Pharmacol 58:462–469

    Article  PubMed  CAS  Google Scholar 

  23. Logue JS, Scott JD (2010) Organizing signal transduction through A-kinase anchoring proteins (AKAPs). FEBS J 277:4370–4375

    Article  PubMed  CAS  Google Scholar 

  24. Li Z, Rossi EA, Hoheisel JD, Kalderon D, Rubin CS (1999) Generation of a novel A kinase anchor protein and a myristoylated alanine-rich C kinase substrate-like analog from a single gene. J Biol Chem 274:27191–27200

    Article  PubMed  CAS  Google Scholar 

  25. Rossi EA, Li Z, Feng H, Rubin CS (1999) Characterization of the targeting, binding, and phosphorylation site domains of an A kinase anchor protein and a myristoylated alanine-rich C kinase substrate-like analog that are encoded by a single gene. J Biol Chem 274:27201–27210

    Article  PubMed  CAS  Google Scholar 

  26. Jackson SM, Berg CA (2002) An A-kinase anchoring protein is required for protein kinase A regulatory subunit localization and morphology of actin structures during oogenesis in Drosophila. Development 129:4423–4433

    PubMed  CAS  Google Scholar 

  27. Smith FD, Langeberg LK, Cellurale C, Pawson T, Morrison DK, Davis RJ, Scott JD (2010) AKAP-Lbc enhances cyclic AMP control of the ERK1/2 cascade. Nat Cell Biol 12:1242–1249

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Bloomington Stock Center, Kyoto Drosophila Genetic Resource Center, Vienna Drosophila RNAi Center and the Australian Drosophila Biomedical Research Support Facility for providing Drosophila strains and the Developmental Studies Hybridoma Bank for providing antibodies. We would like to thank Franca Casagranda for assistance with qRT-PCR and Robb de Iongh for assistance with in situ hybridisation. This work was sponsored by the National Health and Medical Research Council Project Grant 350316 to GH and HR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary R. Hime.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sannang, R.T., Robertson, H., Siddall, N.A. et al. Akap200 suppresses the effects of Dv-cbl expression in the Drosophila eye. Mol Cell Biochem 369, 135–145 (2012). https://doi.org/10.1007/s11010-012-1376-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1376-x

Keywords

Navigation