Skip to main content

Advertisement

Log in

Lactobacillus protected bone damage and maintained the antioxidant status of liver and kidney homogenates in female wistar rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of the study was to evaluate protective property of Lactobacillus casei and Lactobacillus acidophilus in minimizing oxidative stress associated with arthritis from liver and kidney. Subsequently, protective property of Lactobacillus against the bone damage was also taken into consideration. Arthritis was induced by injecting freund’s complete adjuvant (100 μl) into sub plantar surface of hind paw. Oral administration of culture, vehicle, and drug started after induction of arthritis (i.e. on day 9th). Indomethacin was used as a standard drug. Radiographic analysis of the hind paw knee joint was also done at the end of the 21st day. Oxidative stress parameters were studied from liver and kidney homogenate. Histopathology of liver and kidney was also performed. Lactobacillus treatment significantly rescued the enzymatic level of catalase, superoxide dismutase, reduced glutathione, and glutathione peroxidase in both liver and kidney homogenates, whereas it has decreased the malonaldehyde accumulation. Oral administration of Lactobacillus also significantly decreased the serum ceruloplasmin level. Radiographic analysis also corroborated these findings. Lactobacillus treatment maintained the normal histopathology of liver and kidney. Results of this study clearly suggest that L. casei and L. acidophilus, alone or in combination, decreased the bone damaged and effectively restored antioxidant status of liver and kidney. Lactobacillus has a significant antiarthritic and antioxidant activity against freund’s complete adjuvant induced arthritis in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tripathi KD (2004) Essentials in medical pharmacology, 4th edn. J.B Medical Publishers, New Delhi

    Google Scholar 

  2. Patil KR, Patil CR, Jadhav RB, Mahajan VK, Patil PR, Gaikwad PS (2009) Anti-arthritic activity of Bartogenic acid isolated from fruits of Barringtonia racemosa Roxb. (Lecythidaceae). eCAM, 1–7

  3. Bertolini A, Ottani A, Sandrini M (2001) Dual acting anti-inflammatory drugs: a reappraisal. Pharmacol Res 44:437–450

    Article  PubMed  CAS  Google Scholar 

  4. White WB, West CR, Borer JS, Gorelick PB, Lavange L, Pan SX et al (2007) Risk of cardiovascular events in patients receiving celecoxib: a meta-analysis of randomized clinical trials. Am J Cardiol 99:91–98

    Article  PubMed  CAS  Google Scholar 

  5. Singh G, Triadafilopoulos G (1999) Epidemiology of NSAID induced gastrointestinal complications. J Rheumatol 56:18–24

    CAS  Google Scholar 

  6. Galati GS, Tafazoli O, Sabzevari TM, Chan TS, O’Brien PJ (2002) Idiosyncratic NSAID drug induced oxidative stress. Chem Biol Interact 142:25–41

    Article  PubMed  CAS  Google Scholar 

  7. Hitchon CA, Ei-Gabalawy HS (2004) Oxidation in rheumatoid arthritis. Arthritis Res Ther 6(6):265–278

    Article  PubMed  Google Scholar 

  8. Gutteridge A (1986) Study of their activity in serum and synovial fluid from patients with rheumatoid arthritis. Biochem Biophys Acta 869:119–127

    Article  PubMed  CAS  Google Scholar 

  9. Beimond P, Swakk AK, Koster JF (1984) Protective factors against oxygen free radicals and hydrogen peroxide in rheumatoid arthritis synovial fluid. Arth Rheumatol 27:760–765

    Article  Google Scholar 

  10. Yu BP (1994) Cellular defences against damage from reactive oxygen species. Biol Rev 74:139–162

    CAS  Google Scholar 

  11. Ray G, Husain SH (2002) Oxidants, antioxidants and carcinogenesis. Ind J Exp Biol 40:1213–1232

    CAS  Google Scholar 

  12. Hadjigogos K (2003) The role of free radicals in the pathogenesis of rheumatoid arthritis. Panminerva Med 45:7–13

    PubMed  CAS  Google Scholar 

  13. Akkus I, Kalak S, Vural H, Caglayan O, Menekse E, Can G, Durmus B (1996) Leukocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase and serum and leukocyte vitamin C levels of patients with type II diabetes mellitus. Clin Chim Acta 244:221–227

    Article  PubMed  CAS  Google Scholar 

  14. Taysi S, Gul M, Sari RA, Akçay F, Bakan N (2002) Oxidant/Antioxidant status in serum of patients with systemic lupus erythematosus. Clin Chem Lab Med 40:684–688

    Article  PubMed  CAS  Google Scholar 

  15. Taysi S, Kocer I, Memisoullari R, Kiziltunc A (2002) Oxidant/antioxidant status in serum of patients with Behçet’s disease. Ann Clin Lab Sci 32:377–382

    PubMed  CAS  Google Scholar 

  16. Taysi S, Polat F, Gul M, Sari RA, Bakan E (2002) Lipid peroxidation, some extracellular antioxidants and antioxidant enzymes in serum of patients with rheumatoid arthritis. Rheumat Int 21:200–204

    Article  CAS  Google Scholar 

  17. Yagi K (1984) Increased lipid peroxides initiates atherogenesis. Bio Essays 1:58–60

    CAS  Google Scholar 

  18. Whitehouse MW, Turner AG, Davis CKG, Roberts MS (2007) Emu oil(s): a source of non-toxic transdermal anti-inflammatory agents in aboriginal medicine. Inflammopharmacology 6(1):1–18

    Article  Google Scholar 

  19. Kumar N, Singh S, Patro N, Patro I (2009) Evaluation of protective efficacy of Spirulina platensis against collagen-induced arthritis in rats. Inflammopharmacology 17:181–190

    Article  PubMed  Google Scholar 

  20. Bahrav E, Mor F, Halpam M, Weinberger A (2004) Lactobacillus GG bacteria ameliorate arthritis in lewis rats. J Nutr 134:1964–1969

    Google Scholar 

  21. Baken KA, Ezendam J, Gremmer ER, Klerk A, Pennings JLA, Matthee B, Peijnenburg AA, Loveren H (2006) Evaluation of immunomodulation by Lactobacillus casei Shirota: immune function, autoimmunity and gene expression. Int J Food Microbiol 112:8–18

    Article  PubMed  CAS  Google Scholar 

  22. Amdekar S, Singh V, Singh R, Sharma P, Yadav S, Kumar A (2010) Assessment of antiarthritic and immunomodulatory activity of Lactobacillus casei in collagen induced arthritis (CIA) experimental model. Int J Intergrative Biol 9(3):141–147

    CAS  Google Scholar 

  23. Amdekar S, Singh V, Singh R, Sharma P, Keshav P, Kumar A (2011) Lactobacillus casei reduces the inflammatory joint damage associated with collagen induced arthritis (CIA) by reducing the Pro-inflammatory cytokines. J Clin Immunol 30(6):147–154

    Article  Google Scholar 

  24. Jarvenappa S, Thavonene RL, Ouwehand AC, Sandell M, Jarvenappa E, Salminene SA (2007) Probiotic Lactobacillus fermentum ME-3, has antioxidant capacity in cheese spread with different fats. J Dairy Sci 90:3171–3177

    Article  Google Scholar 

  25. Kapila S, Vibha Sinha PR (2008) Antioxidative and hypocholestreolomic effect of Lactobacillus casei ssp. casei (Biodefensive properties of Lactobacilli). Ind J Med Sci 60(9):361–370

    Article  Google Scholar 

  26. Pearson CM (1956) Development of arthritis, periarthritis, periostitis in give rat adjuvant. Proc Soc Exp Biol Med 91:95–105

    PubMed  CAS  Google Scholar 

  27. Hoffman JC, Herkoltz C, Zeilder H, Bayer B, Rosenthal H, Westermann J (1997) Initiation and perpetuation of rat adjuvant arthritis is inhibited by the anti CD-2 monoclonal antibody (mAB) OX34. Ann Rheum Dis 56:716–722

    Article  Google Scholar 

  28. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  29. Sinha AK (1972) Colorimetric assay of catalase. Ann Biochem 47:389–394

    Article  CAS  Google Scholar 

  30. Winterbourn Barnaby RJ, Kent PW, Mian N (1979) Incorporation of N-fluoroacetyl-d-glucosamine into hyaluronate by rabbit tracheal explants in organ culture. Biochem J 182:707–716

    Google Scholar 

  31. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissue by thiobarbituric reaction. Ann Biochem 95:351–358

    Article  CAS  Google Scholar 

  32. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Meth Enzymol 105:114–121

    Article  PubMed  CAS  Google Scholar 

  33. Prakash M, Shetty JK (2008) A modified spectrophotometric micromethod to determine serum copper. Asian J Biochem 3(1):38–42

    Article  CAS  Google Scholar 

  34. Silva AM, Bambirra EA, Oliveira AL, Souza PP, Gomes DA, Vieira EC, Nicoli JR (1998) Protective effect of Bifidus milk on the experimental infection with Salmonella enteritidis subsp. typhimurium in conventional and gnotobiotic mice. J App Microbiol 86:331–336

    Article  Google Scholar 

  35. Aota S, Nakamura T, Suzuki Y, Tanaka Y, Okazaki Y, Segawa Y, Miura M, Kikuchi S (1996) Effects of indomethacin administration on bone turnover and bone mass in adjuvant-induced arthritis in rats. Cal Tissue Int 59:385–391

    Article  CAS  Google Scholar 

  36. Makinen HH, Kautiainen P, Hanonen T, Hannone M, Leirisalo-Repo L, Laasonen M, Korpela H, Blafield H, Hakola M, Sokka T (2007) Sustained remission and reduced radiographic progression with combination diseases modifying antirheumatic drugs in early rheumatoid arthritis. J Rheumatol 34:316–321

    PubMed  CAS  Google Scholar 

  37. Calvin M, Gorzalczany S, Macho A, Munoz E, Ferraro G, Acevedo C et al (2007) Anti-inflammatory activity of flavonoids from Eupatorium arnottianum. J Ethnopharmacol 16:585–589

    Article  Google Scholar 

  38. Sabina EP, Rasool M (2007) Therapeutic efficacy of Indian ayurvedic herbal formulation Triphala on lipid peroxidation, antioxidant status and inflammatory mediators TNF-α in adjuvant induced arthritis mice. Int J Biol Chem 1(3):149–155

    Article  Google Scholar 

  39. Geetha T, Varalkshmi P, Marylatha R (1998) Effect of triterpens from Crataeva nurvala stem bark on lipid peroxidation in adjuvant induced arthritis in rats. Pharmacol Res 37(3):191–195

    Article  PubMed  CAS  Google Scholar 

  40. Rasool M, Varalakhsmi P (2007) Protective effect of Whithania somnifera root powder in relation to lipid peroxidation, antioxidant status, glycoproteins and bone collagen on adjuvant-induced arthritis. Fund Clin Pharmacol 21:157–164

    Article  CAS  Google Scholar 

  41. Ostrakhovitch EA, Afanas’ev IB (2001) Oxidative stress in rheumatoid arthritis leukocytes: suppression by rutin and other antioxidants and chelators. Biochem Pharmacol 62(6):743–746

    Article  PubMed  CAS  Google Scholar 

  42. Ramprasad VRP, Shanti P, Sachdanandam P (2005) Evaluation of antioxidant effects of Semecarpus anacardium Linn. Nut extract on the components of immune system in adjuvants arthritis. Vas Pharmacol 42:179–186

    Article  Google Scholar 

  43. McCord JM, Boyle JA, Day ED, Rizzolo LJ, Salin ML (1977) A manganese-containing superoxide dismutase from human liver. In: Michelson AM, McCord JM, Fridovich I (eds), Superoxides and superoxides dismutases. Academic Press, London, pp. 129–138

  44. Roos D, Weening RS (1978) Defects in the oxidative killing of microorganisms by phagocytic leukocytes. Ciba Found Symp 65:225–262

    PubMed  Google Scholar 

  45. Punitha ISR, Rajendran K, Shirwaikar A (2005) Alcoholic stem extract of Coscinium fenestratum regulates carbohydrate metabolism and improves antioxidant status in streptozotocin–nicotinamide induced diabetic rats. eCAM 2(3):375–381

    Google Scholar 

  46. Govindarajan R, Vijaykumar M, Shirwaikar A, Rawat AKS, Mehrotra S, Pushpangadan P (2006) Antioxidant activity of Desmodium gangetium and its phenolics in arthritic rats. Acta Pharmaceutical 56:489–496

    CAS  Google Scholar 

  47. Rister M, Bancher RL (1976) The alteration of SOD, CAT, GPx, NADPH, Cyt: C, Oxidase in guinea pig polymorhonuclear leucocytes and alveolar macrophage during hypoxia. J Clin Inv 58:1174–1184

    Article  CAS  Google Scholar 

  48. Paval J, Kaitheri SK, Potu BK, Govindan S, Kumar RS, Narayan SN, Moorkoth S (2009) Comparing the anti-arthritic activities of the plants Justica gendarussa Burm F. and Withania somnifera Linn. Int J Green Pharm 3:281–284

    Article  Google Scholar 

  49. Lotz M (1999) The role of nitric oxide in articular cartilage damage. Rheum Dis Clinics North Am 25:269–282

    Article  CAS  Google Scholar 

  50. Tiku ML, Gupta S, Deshmukh DR (1999) Aggrecan degradation in chondrocytes is mediated by reactive oxygen species and protected by antioxidants. Free Radical Res 30:395–405

    Article  CAS  Google Scholar 

  51. Filippin LI, Vercelino R, Marroni NP, Xavier RM (2008) Redox signaling and the inflammatory response in rheumatoid arthritis. Clin Exp Immunol 152:415–422

    Article  PubMed  CAS  Google Scholar 

  52. Kojima H, Uemura M, Sakurai S (2002) Clinical features of liver disturbance in rheumatoid diseases: clinicopathological study with special reference to the cause of liver disturbance. Gastroenterology 37:617–625

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the Institute of Biomedical Sciences, Bundelkhand University, Jhansi, Uttar Pradesh, for Animal House and laboratory facility and the Department of Microbiology, Barkatullah University, Bhopal, for laboratory facility provided to conduct the study.

Conflict of interest

There are no financial competing interests (political, personal, religious, ideological, academic, intellectual, commercial, or any other) to declare in relation to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amdekar, S., Kumar, A., Sharma, P. et al. Lactobacillus protected bone damage and maintained the antioxidant status of liver and kidney homogenates in female wistar rats. Mol Cell Biochem 368, 155–165 (2012). https://doi.org/10.1007/s11010-012-1354-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1354-3

Keywords

Navigation