Skip to main content
Log in

Metformin interacts with AMPK through binding to γ subunit

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Metformin acts as an energy regulator by activating 5′-adenosine monophosphate-activated protein kinase (AMPK), which is a key player in the regulation of energy homeostasis, but it is uncertain whether AMPK is its direct target. This study aims to investigate the possible interaction between metformin and AMPK. First, we verified that metformin can promote AMPK activation and induce ACC inactivation in human HepG2 cells using western blot. Then we predicted that metformin may interact with the γ subunit of AMPK by molecular docking analysis. The fluorescence spectrum and ForteBio assays indicated that metformin has a stronger binding ability to the γ subunit of AMPK than to α subunit. In addition, interaction of metformin with γ-AMPK resulted in a decrease in the α-helicity determined by CD spectra, but relatively little change was seen with α-AMPK. These results demonstrate that metformin may interact with AMPK through binding to the γ subunit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AICAR:

5-Aminoimidazole-4-carboxamide-1-β-d-ribonucleoside

ACC:

Acetyl-CoA carboxylase

AMPK:

5′-Adenosine monophosphate-activated protein kinase

BSA:

Bovine serum albumin

CD:

Circular dichroism

DMEM:

Dulbecco’s modified Eagle’s medium

DTT:

Dithiothreitol

ECL:

Enhanced chemiluminescence

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethylene glycol tetraacetic acid

FCS:

Fetal calf serum

IPTG:

Isopropyl-1-thio-d-galactopyranoside

PMSF:

Phenylmethanesulfonyl fluoride

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

ZMP:

5-Aminoimidazole-4-carboxamide-1-β-d-ribotide

References

  1. Lenhard JM, Kliewer SA, Paulik MA, Plunket KD, Lehmann JM, Weiel JE (1997) Effects of troglitazone and metformin on glucose and lipid metabolism: alterations of two distinct molecular pathways. Biochem Pharmacol 54:801–808

    Article  PubMed  CAS  Google Scholar 

  2. Galuska D, Zierath J, Thörne A, Sonnenfeld T, Wallberg-Henriksson H (1991) Metformin increases insulin-stimulated glucose transport in insulin-resistant human skeletal muscle. Diabetes Metab 17:159–163

    CAS  Google Scholar 

  3. Hundal HS, Ramlal T, Reyes R, Leiter LA, Klip A (1992) Cellular mechanism of metformin action involves glucose transporter translocation from an intracellular pool to the plasma membrane in L6 muscle cells. Endocrinology 131:1165–1173

    Article  PubMed  CAS  Google Scholar 

  4. Bailey CJ, Turner RC (1996) Metformin. N Engl J Med 334:574–579

    Article  PubMed  CAS  Google Scholar 

  5. Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, Inzucchi SE, Schumann WC, Petersen KF, Landau BR, Shulman GI (2000) Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49:2063–2069

    Article  PubMed  CAS  Google Scholar 

  6. Rasuli P, Hammond DI (1998) Metformin and contrast media: where is the conflict? Can Assoc Radiol J 49:161–166

    PubMed  CAS  Google Scholar 

  7. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330:1304–1305

    Article  PubMed  Google Scholar 

  8. Bowker SL, Majumdar SR, Veugelers P, Johnson JA (2006) Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin: response to Farooki and Schneider. Diabetes Care 29:1990–1991

    Article  PubMed  Google Scholar 

  9. Micic D, Cvijovic G, Trajkovic V, Duntas LH, Polovina S (2011) Metformin: its emerging role in oncology. Hormones (Athens) 10:5–15

    Google Scholar 

  10. Kourelis TV, Siegel RD (2012) Metformin and cancer: new applications for an old drug. Med Oncol 29:1314–1327

    Google Scholar 

  11. Gonzalez-Angulo AM, Meric-Bernstam F (2010) Metformin: a therapeutic opportunity in breast cancer. Clin Cancer Res 16:1695–1700

    Article  PubMed  CAS  Google Scholar 

  12. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    PubMed  CAS  Google Scholar 

  13. Zhang BB, Zhou G, Li C (2009) AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9:407–416

    Article  PubMed  Google Scholar 

  14. Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, Teh T, House CM, Fernandez CS, Cox T, Witters LA, Kemp BE (1996) Mammalian AMP-activated protein kinase subfamily. J Biol Chem 271:611–614

    Article  PubMed  CAS  Google Scholar 

  15. Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

    Article  PubMed  CAS  Google Scholar 

  16. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101:3329–3335

    Article  PubMed  CAS  Google Scholar 

  17. Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D (2005) Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2:21–33

    Article  PubMed  CAS  Google Scholar 

  18. Green AS, Chapuis N, Lacombe C, Mayeux P, Bouscary D, Tamburini J (2011) LKB1/AMPK/mTOR signaling pathway in hematological malignancies: from metabolism to cancer cell biology. Cell Cycle 10:2115–2120

    Article  PubMed  CAS  Google Scholar 

  19. Sebbagh M, Olschwang S, Santoni MJ, Borg JP (2011) The LKB1 complex-AMPK pathway: the tree that hides the forest. Fam Cancer 10:415–424

    Article  PubMed  CAS  Google Scholar 

  20. Hardie DG, Carling D (1997) The AMP-activated protein kinase–fuel gauge of the mammalian cell? Eur J Biochem 246:259–273

    Article  PubMed  CAS  Google Scholar 

  21. Ponticos M, Lu QL, Morgan JE, Hardie DG, Partridge TA, Carling D (1998) Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J 17:1688–1699

    Article  PubMed  CAS  Google Scholar 

  22. Richter EA, Ruderman NB (2009) AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J 418:261–275

    Article  PubMed  CAS  Google Scholar 

  23. Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89:1025–1078

    Article  PubMed  CAS  Google Scholar 

  24. He XX, Tu SM, Lee MH, Yeung SC (2011) Thiazolidinediones and metformin associated with improved survival of diabetic prostate cancer patients. Ann Oncol 22:2640–2645

    Article  PubMed  Google Scholar 

  25. Miller RA, Chu Q, Le Lay J, Scherer PE, Ahima RS, Kaestner KH, Foretz M, Viollet B, Birnbaum MJ (2011) Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1-AMPK signaling. J Clin Invest 121:2518–2528

    Article  PubMed  CAS  Google Scholar 

  26. Fryer LG, Parbu-Patel A, Carling D (2002) The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 277:25226–25232

    Article  PubMed  CAS  Google Scholar 

  27. Hawley SA, Gadalla AE, Olsen GS, Hardie DG (2002) The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51:2420–2425

    Article  PubMed  CAS  Google Scholar 

  28. Schapira M, Raaka BM, Samuels HH, Abagyan R (2000) Rational discovery of novel nuclear hormone receptor antagonists. Proc Natl Acad Sci USA 97:1008–1013

    Article  PubMed  CAS  Google Scholar 

  29. Park SJ, Kufareva I, Abagyan R (2010) Improved docking, screening and selectivity prediction for small molecule nuclear receptor modulators using conformational ensembles. J Comput Aided Mol Des 24:459–471

    Article  PubMed  CAS  Google Scholar 

  30. Merrill GF, Kurth EJ, Hardie DG, Winder WW (1997) AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 273:E1107–E1112

    PubMed  CAS  Google Scholar 

  31. Kandagal PB, Kalanur SS, Manjunatha DH, Seetharamappa J (2008) Mechanism of interaction between human serum albumin and N-alkyl phenothiazines studied using spectroscopic methods. J Pharm Biomed Anal 47:260–267

    Article  PubMed  CAS  Google Scholar 

  32. Wang Q, Liang B, Shirwany NA, Zou MH (2011) 2-Deoxy-d-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase. PLoS One 6:e17234

    Article  PubMed  CAS  Google Scholar 

  33. Campa D, Claus R, Dostal L et al (2011) Variation in genes coding for AMP-activated protein kinase (AMPK) and breast cancer risk in the European Prospective Investigation on Cancer (EPIC). Breast Cancer Res Treat 127:761–767

    Article  PubMed  CAS  Google Scholar 

  34. Stigler RD, Hoffmann B, Abagyan R, Schneider-Mergener J (1999) Soft docking an l and a d peptide to an anticholera toxin antibody using internal coordinate mechanics. Structure 7:663–670

    Article  PubMed  CAS  Google Scholar 

  35. Schapira M, Raaka BM, Das S, Fan L, Totrov M, Zhou Z, Wilson SR, Abagyan R, Samuels HH (2003) Discovery of diverse thyroid hormone receptor antagonists by high-throughput docking. Proc Natl Acad Sci USA 100:7354–7359

    Article  PubMed  CAS  Google Scholar 

  36. Gruzman A, Babai G, Sasson S (2009) Adenosine monophosphate-activated protein kinase (AMPK) as a new target for antidiabetic drugs: a review on metabolic, pharmacological and chemical considerations. Rev Diabet Stud 6:13–36

    Article  PubMed  Google Scholar 

  37. Rattan R, Graham RP, Maguire JL, Giri S, Shridhar V (2011) Metformin suppresses ovarian cancer growth and metastasis with enhancement of cisplatin cytotoxicity in vivo. Neoplasia 13:483–491

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the members of the M.P.E. laboratories of Xiamen University and School of Life Sciences of Tsinghua University for providing technology support. This study was supported by National Institutes of Major Research Projects (No. 200909040785) and the Science and Technology Foundation of Fujian Province of China (NO.2010D013).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqiang Chen.

Additional information

Yaya Zhang and Yongjun Wang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, Y., Bao, C. et al. Metformin interacts with AMPK through binding to γ subunit. Mol Cell Biochem 368, 69–76 (2012). https://doi.org/10.1007/s11010-012-1344-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1344-5

Keywords

Navigation