Skip to main content
Log in

Decreased response to cAMP in the glucose and glycogen catabolism in perfused livers of Walker-256 tumor-bearing rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The hepatic response to cyclic adenosine monophosphate (cAMP) and N6-monobutyryl-cAMP (N6-MB-cAMP) in the glucose and glycogen catabolism and hepatic glycogen levels were evaluated in Walker-256 tumor-bearing rats, on days 5 (WK5), 8 (WK8), and 11 (WK11) after the implantation of tumor. Rats without tumor fed ad libitum (fed control rats) or that received the same daily amount of food ingested by anorexics tumor-bearing rats (pair-fed control rats) or 24 h fasted (fasted control rats) were used as controls. Glucose and glycogen catabolism were measured in perfused liver. Hepatic glycogen levels were lower (p < 0.05) in WK5, WK8, and WK11 rats in comparison with fed control rats, but not in relation to the pair-fed control rats. However, the stimulatory effect of cAMP (3 and 9 μM) in the glycogen catabolism was lower (p < 0.05), respectively, in WK5 and WK8 rats compared to the pair-fed and fed control rats. Accordingly, the suppressive effect of cAMP (6 μM) in the glucose catabolism, under condition of depletion of hepatic glycogen (24 h fast), was lower (p < 0.05) in WK5 and WK11 rats than in fasted control rats. Similarly, the suppressive effect of N6-MB-cAMP (1 μM), a synthetic analogue of cAMP that it is not degraded by phosphodiesterase 3B (PDE3B), in the glucose catabolism was lower (p < 0.05) in WK5 rats compared to fasted control rats. In conclusion, livers of Walker-256 tumor-bearing rats showed lower response to cAMP in the glucose and glycogen catabolism in various stages of tumor development (days 5, 8 and 11), which was probably not due to the lower hepatic glycogen levels nor due to the increased activity of PDE3B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hirai K, Ishiko O, Tisdale M (1997) Mechanism of depletion of liver glycogen in cancer cachexia. Biochem Biophys Res Commun 241:49–52. doi:10.1006/bbrc.1997.7732

    Article  PubMed  CAS  Google Scholar 

  2. Tisdale MJ (2009) Mechanisms of cancer cachexia. Physiol Rev 89:381–410. doi:10.1152/physrev.00016.2008

    Article  PubMed  CAS  Google Scholar 

  3. Tisdale MJ (2010) Cancer cachexia. Curr Opin Gastroenterol 26:146–151. doi:10.1097/MOG.0b013e3283347e77

    Article  PubMed  Google Scholar 

  4. Glass DJ (2010) Signaling pathways perturbing muscle mass. Curr Opin Clin Nutr Metab Care 13:225–229. doi:10.1097/MCO.0b013e32833862df

    Article  PubMed  CAS  Google Scholar 

  5. Rubin H (2003) Cancer Cachexia: its correlations and causes. Proc Natl Acad Sci U S A 100:5384–5389. doi:10.1073/pnas.0931260100

    Article  PubMed  CAS  Google Scholar 

  6. Ramos EJ, Suzuki S, Marks D, Inui A, Asakawa A, Meguid MM (2004) Cancer anorexia–cachexia syndrome: cytokines and neuropeptides. Curr Opin Clin Nutr Metab Care 7:427–434. doi:10.1097/01.mco.0000134363.53782.cb

    Article  PubMed  CAS  Google Scholar 

  7. Loberg RD, Bradley DA, Tomlins SA, Chinnaiyan AM, Pienta KJ (2007) The lethal phenotype of cancer: the molecular basis of death due to malignancy. CA Cancer J Clin 57:225–241. doi:10.3322/canjclin.57.4.225

    Article  PubMed  Google Scholar 

  8. Bennani-Baiti N, Davis MP (2008) Cytokines and cancer anorexia cachexia syndrome. Am J Hosp Palliat Care 25:407–411. doi:10.1177/1049909108315518

    Article  PubMed  Google Scholar 

  9. Tisdale MJ (2008) Catabolic mediators of cancer cachexia. Curr Opin Support Palliat Care 2:256–261. doi:10.1097/SPC.0b013e328319d7fa

    Article  PubMed  Google Scholar 

  10. Tisdale MJ (2010) Are tumoral factors responsible for host tissue wasting in cancer cachexia? Future Oncol 6:503–513. doi:10.2217/fon.10.20

    Article  PubMed  CAS  Google Scholar 

  11. Argilés JM, Busquets S, Toledo M, López-Soriano FJ (2009) The role of cytokines in cancer cachexia. Curr Opin Support Palliat Care 3:263–268. doi:10.1097/SPC.0b013e3283311d09

    Article  PubMed  Google Scholar 

  12. Bartlett DL, Charland SL, Torosian MH (1995) Reversal of tumor associated hyperglucagonemia as treatment for cancer cachexia. Surgery 118:87–97. doi:10.1016/S0039-6060(05)80014-5

    Article  PubMed  CAS  Google Scholar 

  13. Burt ME, Aoki TT, Gorschboth CM, Brennan MF (1983) Peripheral tissue metabolism in cancer-bearing man. Ann Surg 198:685–691. doi:10.1097/00000658-198312000-00003

    Article  PubMed  CAS  Google Scholar 

  14. Tessitore L, Costelli P, Baccino FM (1993) Humoral mediation for cachexia in tumour-bearing rats. Br J Cancer 67:15–23. doi:10.1038/bjc.1993.4

    Article  PubMed  CAS  Google Scholar 

  15. Seelaender MCL, Kazantzis M, Costa Rosa LFBP (1999) The effect of adrenaline and Walker-256 tumour-induced cachexia upon Kupffer cell metabolism. Cell Biochem Funct 17:151–156. doi:10.1002/(SICI)1099-0844(199909)17:3<151:AID-CBF820>3.0.CO;2-K

    Article  PubMed  CAS  Google Scholar 

  16. Fernandes LC, Machado UF, Nogueira CR, Carpinelli AR, Curi R (1990) Insulin secretion in Walker 256 tumor cachexia. Am J Physiol 258:E1033–E1036

    PubMed  CAS  Google Scholar 

  17. Piffar PM, Fernandez R, Tchaikovski JO, Hirabara SM, Folador A, Pinto GJ, Jakobi S, Gobbo-Bordon D, Rohn TV, Fabrício VEB, Moretto KD, Tosta E, Curi R, Fernandes LC (2003) Naproxen, clenbuterol and insulin administration ameliorates cancer cachexia and reduce tumor growth in Walker 256 tumor-bearing rats. Cancer Lett 201:139–148. doi:10.1016/S0304-3835(03)00472-5

    Article  PubMed  CAS  Google Scholar 

  18. Fonseca EAI, de Oliveira MA, Lobato NS, Akamine EH, Colquhoun A, de Carvalho MHC, Zyngier SB, Fortes ZB (2011) Metformin reduces the stimulatory effect of obesity on in vivo Walker-256 tumor development and increases the area of tumor necrosis. Life Sci 88:846–852. doi:10.1016/j.lfs.2011.03.005

    Article  PubMed  CAS  Google Scholar 

  19. Lundholm K, Holm G, Schersten T (1978) Insulin resistance in patients with cancer. Cancer Res 38:4665–4670

    PubMed  CAS  Google Scholar 

  20. Copeland GP, Leinster SJ, Davis JC, Hipkin LJ (1987) Insulin resistance in patients with colorectal cancer. Br J Surg 74:1031–1035. doi:10.1002/bjs.1800741124

    Article  PubMed  CAS  Google Scholar 

  21. Tayek JA (1992) A review of cancer cachexia and abnormal glucose metabolism in humans with cancer. J Am Coll Nutr 11:445–456

    PubMed  CAS  Google Scholar 

  22. Rofe AM, Bourgeois CS, Coyle P, Taylor A, Abdi EA (1994) Altered insulin response to glucose in weight-losing cancer patients. Anticancer Res 14:647–650

    PubMed  CAS  Google Scholar 

  23. Vicentino C, Constantin J, Stecanella LA, Bracht A, Yamamoto NS (2002) Glucose and glycogen catabolism in perfused livers of Walker-256 tumor-bearing rats and the response to hormones. Pathophysiology 8:175–182

    Article  PubMed  CAS  Google Scholar 

  24. Hermsdorf T, Dettmer D (1998) Combined effects of insulin and dexamethasone on cyclic AMP phosphodiesterase 3 and glycogen metabolism in cultured rat hepatocytes. Cell Signal 10:629–635. doi:10.1016/S0898-6568(98)00003-5

    Article  PubMed  CAS  Google Scholar 

  25. Bergmeyer HU, Bernt E (1974) Determination of glucose with glucose-oxidase and peroxidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 1205–1215

    Google Scholar 

  26. Hassid WZ, Abraham S (1957) Chemical procedures for analysis of polysaccharides. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic Press, New York, pp 34–36

    Chapter  Google Scholar 

  27. Bassoli BK, Cassolla P, Borba-Murad GR, Constantin J, Salgueiro-Pagadigorria CL, Bazotte RB, Silva RSF, Souza HM (2008) Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: effects on hepatic glucose release and glycaemia. Cell Biochem Funct 26:320–328. doi:10.1002/cbf.1444

    Article  PubMed  CAS  Google Scholar 

  28. Leonardo ES, Bassoli BK, Cassola P, Borba-Murad GR, Bazotte RB, Souza HM (2009) Leptin inhibits glycogen catabolism but does not modify acutely the suppressive effect of insulin on glucose production and glycogenolysis stimulated by 8-Br-cAMP in rat liver perfused in situ. Pharmacol Res 59:176–182. doi:10.1016/j.phrs.2008.12.002

    Article  PubMed  CAS  Google Scholar 

  29. Mario EG, Leonardo ES, Bassoli BK, Cassolla P, Borba-Murad GR, Bazotte RB, Souza HM (2009) Investigation of the acute effect of leptin on the inhibition of glycogen catabolism by insulin in rat liver perfused in situ. Pharmacol Rep 61:319–324

    PubMed  CAS  Google Scholar 

  30. Fedatto-Júnior Z, Ishii-Iwamoto EL, Caparroz-Assef SM, Vicentini GE, Bracht A, Kelmer-Bracht AM (2002) Glycogen levels and glycogen catabolism in livers from arthritic rats. Mol Cell Biochem 229:1–7

    Article  PubMed  Google Scholar 

  31. Caparroz-Assef SM, Bersani-Amado CA, Kelmer-Bracht AM, Bracht A, Ishii-Iwamoto EL (2007) The metabolic changes caused by dexamethasone in the adjuvant-induced arthritic rat. Mol Cell Biochem 302:87–98

    Article  PubMed  CAS  Google Scholar 

  32. Gutmann I, Wahlefeld W (1974) L-(+)-Lactate. Determination with lactate dehydrogenase and NAD. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 1464–1472

    Google Scholar 

  33. Czok R, Lamprecht W (1974) Pyruvate, phosphoenolpyruvate and D-glycerate-2-phosphate. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 1446–1448

    Google Scholar 

  34. Bongaerts GP, Van Halteren HK, Verhagen CA, Wagener DJ (2006) Cancer cachexia demonstrates the energetic impact of gluconeogenesis in human metabolism. Med Hypotheses 67(5):1213–1222. doi:10.1016/j.mehy.2006.04.048

    Article  PubMed  CAS  Google Scholar 

  35. Brahimi-Horn MC, Chiche J, Pouysségur J (2007) Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol 19:223–229. doi:10.1016/j.ceb.2007.02.003

    Article  PubMed  CAS  Google Scholar 

  36. Holroyde CP, Reichard GA (1981) Carbohydrate metabolism in cancer cachexia. Cancer Treat Rep 65:55–59

    PubMed  Google Scholar 

  37. Lundholm K, Edström S, Ekman L, Karlberg I, Bylund-Fellenius AC, Scherstén T (1983) Activities of key enzymes in relation to glucose flux in tumor-host livers. Int J Biochem 15:65–72. doi:10.1016/0020-711X(83)90012-5

    Article  PubMed  CAS  Google Scholar 

  38. Sudilovsky O (1974) In vivo regulation of hepatic protein kinase by adenosine 3′,5′-monophosphate mediated glucagon stimulation. Biochem Biophys Res Commun 58:85–91. doi:10.1016/0006-291X(74)90894-8

    Article  PubMed  CAS  Google Scholar 

  39. Keppens S, Wulf H (1975) The activation of liver glycogen phosphorylase by vasopressin. FEBS Lett 51:29–32. doi:10.1016/0014-5793(75)80848-9

    Article  PubMed  CAS  Google Scholar 

  40. Vardanega-Peicher M, Curi R, Pagliarini e Silva S, Nascimento KF, Bazotte RB (2003) Responsiveness of glycogen breakdown to cyclic AMP in perfused liver from rats with insulin-induced hypoglycemia. Braz J Med Biol Res 36:45–51. doi:10.1590/S0100-879X2003000100007

    Article  PubMed  CAS  Google Scholar 

  41. Vardanega-Peicher M, Galletto R, Pagliarini e Silva S, Bazotte RB (2003) Comparative effect of glucagon and isoproterenol on hepatic glycogenolysis and glycolysis in isolated perfused liver. Braz Arch Biol Technol 46:563–568. doi:10.1590/S1516-89132003000400010

    Article  CAS  Google Scholar 

  42. Pilkis SJ, Granner DK (1992) Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol 54:885–909. doi:10.1146/annurev.ph.54.030192.004321

    Article  PubMed  CAS  Google Scholar 

  43. Kitamura T, Kitamura Y, Kuroda S, Hino Y, Ando M, Kotani K, Konishi H, Matsuzaki H, Kikkawa U, Ogawa W, Kasuga M (1999) Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt. Mol Cell Biol 19:6286–6296

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research supported by Fundação Araucária (PRONEX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helenir Medri de Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Morais, H., Cassola, P., Moreira, C.C.L. et al. Decreased response to cAMP in the glucose and glycogen catabolism in perfused livers of Walker-256 tumor-bearing rats. Mol Cell Biochem 368, 9–16 (2012). https://doi.org/10.1007/s11010-012-1337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1337-4

Keywords

Navigation