Skip to main content
Log in

Angiotensin-(1-7) suppresses the number and function of the circulating fibrocytes by upregulating endothelial nitric oxide synthase expression

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

There is growing evidence suggesting that circulating fibrocytes (CFs) play a pivotal role in tissue repair and fibrosis. In contrast, in recent studies, angiotensin-(1-7) [Ang-(1-7)] has been shown to antagonize fibrosis. The purpose of this study was to examine the direct effect of Ang-(1-7) on CFs. Total mononuclear cells (MNCs) were isolated from peripheral blood by Ficoll density gradient centrifugation. Using laser scanning confocal microscopy, CFs were identified as adherent cells that stained positive for both CD34 and collagen-I. After 14 days of culture, CFs were stimulated with Ang-(1-7) at concentrations of 10 nM, 100 nM, 1 μM or 10 μM, in the absence and presence of pretreatment with A-779, NG-nitro-l-arginine methyl ester (L-NAME) or both, for 24, 48 or 72 h. The number of cells, cellular proliferation, and level of apoptosis were determined by hematoxylin and eosin staining, the Cell Counting Kit-8 (CCK8) assay and the annexin V/propidium iodide binding assay, respectively. The collagen content of CFs was measured by the concentration of hydroxyproline, which was detected using the enzymatic digestion method. The expression of endothelial nitric oxide synthase (eNOS) was assayed by western Blot analysis, while nitric oxide (NO) generation was detected using the Griess method. We found that Ang-(1-7) increases apoptosis and eNOS/NO production in CFs. In addition, Ang-(1-7) decreases the number, proliferative capacity and collagen-secretion of CFs in a concentration- and time-dependent manner. These data suggest that Ang-(1-7) suppresses the both the number and function of CFs possibly by increasing eNOS/NO production in the CFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1:71–81

    PubMed  CAS  Google Scholar 

  2. Wada T, Sakai N, Sakai Y, Matsushima K, Kaneko S, Furuichi K (2011) Involvement of bone-marrow-derived cells in kidney fibrosis. Clin Exp Nephrol 15:8–13. doi:10.1007/s10157-010-0372-2

    Article  PubMed  Google Scholar 

  3. Varcoe RL, Mikhail M, Guiffre AK, Pennings G, Vicaretti M, Hawthorne WJ, Fletcher JP, Medbury HJ (2006) The role of the fibrocyte in intimal hyperplasia. J Thromb Haemost 4:1125–1133. doi:10.1111/j.1538-7836.2006.01924.x

    Article  PubMed  CAS  Google Scholar 

  4. Bellini A, Mattoli S (2007) The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 87:858–870. doi:10.1038/labinvest.3700654

    Article  PubMed  CAS  Google Scholar 

  5. Quan TE, Cowper SE, Bucala R (2006) The role of circulating fibrocytes in fibrosis. Curr Rheumatol Rep 8:145–150

    Article  PubMed  CAS  Google Scholar 

  6. Krenning G, Zeisberg EM, Kalluri R (2010) The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 225:631–637. doi:10.1002/jcp.22322

    Article  PubMed  CAS  Google Scholar 

  7. Breitschaft A, Stahlmann R (2009) Nephrogenic systemic fibrosis. Med Monatsschr Pharm 32:377–382

    PubMed  CAS  Google Scholar 

  8. Suvorava T, Kumpf S, Rauch BH, Dao VT, Adams V, Kojda G (2010) Hydrogen peroxide inhibits exercise-induced increase of circulating stem cells with endothelial progenitor capacity. Free Radic Res 44:199–207. doi:10.3109/10715760903402898

    Article  PubMed  CAS  Google Scholar 

  9. Schmidt D, Achermann J, Odermatt B, Breymann C, Mol A, Genoni M, Zund G, Hoerstrup SP (2007) Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation 116:I64–I70. doi:10.1161/CIRCULATIONAHA.106.681494

    Article  PubMed  Google Scholar 

  10. Chen TG, Chen JZ, Wang XX (2006) Effects of rapamycin on number activity and eNOS of endothelial progenitor cells from peripheral blood. Cell Prolif 39:117–125. doi:10.1111/j.1365-2184.2006.00375.x

    Article  PubMed  CAS  Google Scholar 

  11. Velkoska E, Dean RG, Griggs K, Burchill L, Burrell LM (2011) Angiotensin-(1–7) infusion is associated with increased blood pressure and adverse cardiac remodelling in rats with subtotal nephrectomy. Clin Sci (Lond) 120:335–345. doi:10.1042/CS20100280

    Article  CAS  Google Scholar 

  12. Sampaio WO, Souza dos Santos RA, Faria-Silva R, da Mata Machado LT, Schiffrin EL, Touyz RM (2007) Angiotensin-(1–7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension 49:185–192. doi:10.1161/01.HYP.0000251865.35728.2f

    Article  PubMed  CAS  Google Scholar 

  13. Vannella KM, McMillan TR, Charbeneau RP, Wilke CA, Thomas PE, Toews GB, Peters-Golden M, Moore BB (2007) Cysteinyl leukotrienes are autocrine and paracrine regulators of fibrocyte function. J Immunol 179:7883–7890

    PubMed  CAS  Google Scholar 

  14. Salmon M, Pilling D, Borthwick NJ, Viner N, Janossy G, Bacon PA, Akbar AN (1994) The progressive differentiation of primed T cells is associated with an increasing susceptibility to apoptosis. Eur J Immunol 24:892–899. doi:10.1002/eji.1830240417

    Article  PubMed  CAS  Google Scholar 

  15. Pilling D, Akbar AN, Bacon PA, Salmon M (1996) CD4 + CD45RA + T cells from adults respond to recall antigens after CD28 ligation. Int Immunol 8:1737–1742

    Article  PubMed  CAS  Google Scholar 

  16. Iwata M, Cowling RT, Gurantz D, Moore C, Zhang S, Yuan JX, Greenberg BH (2005) Angiotensin-(1–7) binds to specific receptors on cardiac fibroblasts to initiate antifibrotic and antitrophic effects. Am J Physiol Heart Circ Physiol 289:H2356–H2363. doi:10.1152/ajpheart.00317.2005

    Article  PubMed  CAS  Google Scholar 

  17. Lama VN, Phan SH (2006) The extrapulmonary origin of fibroblasts: stem/progenitor cells and beyond. Proc Am Thorac Soc 3:373–376. doi:10.1513/pats.200512-133TK

    Article  PubMed  CAS  Google Scholar 

  18. Mori L, Bellini A, Stacey MA, Schmidt M, Mattoli S (2005) Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res 304:81–90. doi:10.1016/j.yexcr.2004.11.011

    Article  PubMed  CAS  Google Scholar 

  19. Kim YH, Song JJ, Kim YC, Park KT, Lee JH, Choi JM, Oh SH, Chang SO (2010) Geranylgeranylacetone ameliorates acute cochlear damage caused by 3-nitropropionic acid. Neurotoxicology 31:317–325. doi:10.1016/j.neuro.2010.03.001

    Article  PubMed  CAS  Google Scholar 

  20. Luo W, Zhou X, Zhang J, Qian Y, Zheng M, Yu M, Gong X (2007) Analysis of apoptosis and cell proliferation after high intensity-focused ultrasound ablation combined with microbubbles in rabbit livers. Eur J Gastroenterol Hepatol 19:962–968. doi:10.1097/MEG.0b013e3282cfb6f

    Article  PubMed  Google Scholar 

  21. Yang L, Yang XC, Yang JK, Guo YH, Yi FF, Fan Q, Liu XL (2008) Cyclosporin A suppresses proliferation of endothelial progenitor cells: involvement of nitric oxide synthase inhibition. Intern Med 47:1457–1464

    Article  PubMed  Google Scholar 

  22. Villegas J, Schulz M, Soto L, Sanchez R (2005) Bacteria induce expression of apoptosis in human spermatozoa. Apoptosis 10:105–110. doi:10.1007/s10495-005-6065-8

    Article  PubMed  CAS  Google Scholar 

  23. Spallarossa P, Garibaldi S, Altieri P, Fabbi P, Manca V, Nasti S, Rossettin P, Ghigliotti G, Ballestrero A, Patrone F, Barsotti A, Brunelli C (2004) Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol 37:837–846. doi:10.1016/j.yjmcc.2004.05.024

    Article  PubMed  CAS  Google Scholar 

  24. Liu X, Fan XL, Zhao Y, Luo GR, Li XP, Li R, Le WD (2005) Estrogen provides neuroprotection against activated microglia-induced dopaminergic neuronal injury through both estrogen receptor-alpha and estrogen receptor-beta in microglia. J Neurosci Res 81:653–665. doi:10.1002/jnr.20583

    Article  PubMed  CAS  Google Scholar 

  25. Quan TE, Cowper S, Wu SP, Bockenstedt LK, Bucala R (2004) Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 36:598–606. doi:10.1016/j.biocel.2003.10.005

    Article  PubMed  CAS  Google Scholar 

  26. Chesney J, Metz C, Stavitsky AB, Bacher M, Bucala R (1998) Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes. J Immunol 160:419–425

    PubMed  CAS  Google Scholar 

  27. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210. doi:10.1002/path.2277

    Article  PubMed  CAS  Google Scholar 

  28. Abu El-Asrar AM, Struyf S, Van Damme J, Geboes K (2008) Circulating fibrocytes contribute to the myofibroblast population in proliferative vitreoretinopathy epiretinal membranes. Br J Ophthalmol 92:699–704. doi:10.1136/bjo.2007.134346

    Article  PubMed  CAS  Google Scholar 

  29. Abe R, Donnelly SC, Peng T, Bucala R, Metz CN (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 166:7556–7562

    PubMed  CAS  Google Scholar 

  30. Hartlapp I, Abe R, Saeed RW, Peng T, Voelter W, Bucala R, Metz CN (2001) Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J 15:2215–2224. doi:10.1096/fj.01-0049com

    Article  PubMed  CAS  Google Scholar 

  31. Averill DB, Ishiyama Y, Chappell MC, Ferrario CM (2003) Cardiac angiotensin-(1–7) in ischemic cardiomyopathy. Circulation 108:2141–2146. doi:10.1161/01.CIR.0000092888.63239.54

    Article  PubMed  CAS  Google Scholar 

  32. Ferreira AJ, Santos RA, Almeida AP (2002) Angiotensin-(1–7) improves the post-ischemic function in isolated perfused rat hearts. Braz J Med Biol Res 35:1083–1090

    Article  PubMed  CAS  Google Scholar 

  33. Ferreira AJ, Santos RA, Almeida AP (2001) Angiotensin-(1–7): cardioprotective effect in myocardial ischemia/reperfusion. Hypertension 38:665–668

    PubMed  CAS  Google Scholar 

  34. De Mello WC (2004) Angiotensin (1–7) re-establishes impulse conduction in cardiac muscle during ischaemia-reperfusion. The role of the sodium pump. J Renin Angiotensin Aldosterone Syst 5:203–208. doi:10.3317/jraas.2004.041

    Article  PubMed  Google Scholar 

  35. Loot AE, Roks AJ, Henning RH, Tio RA, Suurmeijer AJ, Boomsma F, van Gilst WH (2002) Angiotensin-(1–7) attenuates the development of heart failure after myocardial infarction in rats. Circulation 105:1548–1550

    Article  PubMed  CAS  Google Scholar 

  36. Grobe JL, Mecca AP, Lingis M, Shenoy V, Bolton TA, Machado JM, Speth RC, Raizada MK, Katovich MJ (2007) Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1–7). Am J Physiol Heart Circ Physiol 292:H736–H742. doi:10.1152/ajpheart.00937.2006

    Article  PubMed  CAS  Google Scholar 

  37. Grobe JL, Mecca AP, Mao H, Katovich MJ (2006) Chronic angiotensin-(1–7) prevents cardiac fibrosis in DOCA-salt model of hypertension. Am J Physiol Heart Circ Physiol 290:H2417–H2423. doi:10.1152/ajpheart.01170.2005

    Article  PubMed  CAS  Google Scholar 

  38. Zisman LS, Keller RS, Weaver B, Lin Q, Speth R, Bristow MR, Canver CC (2003) Increased angiotensin-(1–7)-forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin-converting enzyme Homologue ACE2. Circulation 108:1707–1712. doi:10.1161/01.CIR.0000094734.67990.99

    Article  PubMed  CAS  Google Scholar 

  39. Grobe JL, Der Sarkissian S, Stewart JM, Meszaros JG, Raizada MK, Katovich MJ (2007) ACE2 overexpression inhibits hypoxia-induced collagen production by cardiac fibroblasts. Clin Sci (Lond) 113:357–364. doi:10.1042/CS20070160

    Article  CAS  Google Scholar 

  40. Bindom SM, Hans CP, Xia H, Boulares AH, Lazartigues E (2010) Angiotensin I-converting enzyme type 2 (ACE2) gene therapy improves glycemic control in diabetic mice. Diabetes 59:2540–2548. doi:10.2337/db09-0782

    Article  PubMed  CAS  Google Scholar 

  41. Dejean L, Camara Y, Sibille B, Solanes G, Villarroya F (2004) Uncoupling protein-3 sensitizes cells to mitochondrial-dependent stimulus of apoptosis. J Cell Physiol 201:294–304. doi:10.1002/jcp.20048

    Article  PubMed  CAS  Google Scholar 

  42. Feng J, Bianchi C, Sandmeyer JL, Sellke FW (2005) Bradykinin preconditioning improves the profile of cell survival proteins and limits apoptosis after cardioplegic arrest. Circulation 112:I190–I195. doi:10.1161/CIRCULATIONAHA.104.524454

    PubMed  Google Scholar 

  43. Seidman R, Gitelman I, Sagi O, Horwitz SB, Wolfson M (2001) The role of ERK 1/2 and p38 MAP-kinase pathways in taxol-induced apoptosis in human ovarian carcinoma cells. Exp Cell Res 268:84–92. doi:10.1006/excr.2001.5262

    Article  PubMed  CAS  Google Scholar 

  44. Kasahara E, Sato EF, Miyoshi M, Konaka R, Hiramoto K, Sasaki J, Tokuda M, Nakano Y, Inoue M (2002) Role of oxidative stress in germ cell apoptosis induced by di(2-ethylhexyl)phthalate. Biochem J 365:849–856. doi:10.1042/BJ20020254

    PubMed  CAS  Google Scholar 

  45. Shacter E, Williams JA, Hinson RM, Senturker S, Lee YJ (2000) Oxidative stress interferes with cancer chemotherapy: inhibition of lymphoma cell apoptosis and phagocytosis. Blood 96:307–313

    PubMed  CAS  Google Scholar 

  46. Gonzales S, Noriega GO, Tomaro ML, Pena C (2002) Angiotensin-(1–7) stimulates oxidative stress in rat kidney. Regul Pept 106:67–70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the grants from the National Natural Science Foundation of China (No.81070082 and No.30900614).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K., Hu, X., Du, C. et al. Angiotensin-(1-7) suppresses the number and function of the circulating fibrocytes by upregulating endothelial nitric oxide synthase expression. Mol Cell Biochem 365, 19–27 (2012). https://doi.org/10.1007/s11010-012-1223-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1223-0

Keywords

Navigation