Skip to main content
Log in

Astragaloside IV prevents MPP+-induced SH-SY5Y cell death via the inhibition of Bax-mediated pathways and ROS production

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is characterized by a progressive degeneration of dopaminergic neurons in the substantia nigra. Oxidative stress and neural degeneration are suggested to be involved in the pathogenesis of PD. Previous studies have revealed that Astragaloside IV (AS-IV) can reduce inflammation and oxidation, making it a potential therapeutic agent for neurodegenerative disease. In this study, we investigated whether AS-IV protect against 1-methyl-4-phenylpyridnium ion (MPP+)-induced dopaminergic neurotoxicity in SH-SY5Y cells and determined the mechanism of AS-IV neuroprotection. We found that pretreatment with AS-IV significantly reversed the loss of cell viability, nuclear condensation, the generation of intracellular reactive oxygen species (ROS), and the increase in Bax/Bcl-2 ratio and the activity of caspase-3 induced by MPP+. Our study suggests that the neuroprotective effect of AS-IV is related to mechanisms including ROS production and the inhibition of Bax-mediated pathway. The present study supports the notion that AS-IV may be a promising neuroprotective agent for the treatment of neurodegenerative disorders such as PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AS-IV:

Astragaloside IV

DCF:

Dichlorofluorescein

GPs:

Gypenosides

MPP+ :

1-Methyl-4-phenylpyridnium ion

MPT:

Mitochondrial permeability transition

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SN:

Substantia nigra

References

  1. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535

    Article  PubMed  Google Scholar 

  2. Mattson MP (2000) Apoptosis in neurodegenerative disorders. Natl Rev Mol Cell Biol 1:120–129

    Article  CAS  Google Scholar 

  3. Brown JM, Yamamoto BK (2003) Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress. Pharmacol Ther 99:45–53

    Article  PubMed  CAS  Google Scholar 

  4. Seniuk NA, Tatton WG, Greenwood CE (1990) Dose-dependent destruction of the coeruleus-cortical and nigral-striatal projections by MPTP. Brain Res 527:7–20

    Article  PubMed  CAS  Google Scholar 

  5. Hantraye P, Varastet M, Peschanski M, Riche D, Cesaro P, Willer JC, Maziere M (1993) Stable parkinsonian syndrome and uneven loss of striatal dopamine fibres following chronic MPTP administration in baboons. Neuroscience 53:169–178

    Article  PubMed  CAS  Google Scholar 

  6. Singer TP, Ramsay RR (1990) Mechanism of the neurotoxicity of MPTP. An update. FEBS Lett 274:1–8

    Article  PubMed  CAS  Google Scholar 

  7. Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1, 2, 5, 6-tetrahydropyridine. Life Sci 36:2503–2508

    Article  PubMed  CAS  Google Scholar 

  8. Przedborski S, Jackson-Lewis V (1998) Mechanisms of MPTP toxicity. Mov Disord 13(Suppl 1):35–38

    PubMed  Google Scholar 

  9. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  PubMed  CAS  Google Scholar 

  10. Seaton TA, Cooper JM, Schapira AH (1997) Free radical scavengers protect dopaminergic cell lines from apoptosis induced by complex I inhibitors. Brain Res 777:110–118

    Article  PubMed  CAS  Google Scholar 

  11. Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65:135–172

    Article  PubMed  CAS  Google Scholar 

  12. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  PubMed  CAS  Google Scholar 

  13. Crompton M (2000) Bax, Bid and the permeabilization of the mitochondrial outer membrane in apoptosis. Curr Opin Cell Biol 12:414–419

    Article  PubMed  CAS  Google Scholar 

  14. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  PubMed  CAS  Google Scholar 

  15. Di Monte D, Sandy MS, Ekstrom G, Smith MT (1986) Comparative studies on the mechanisms of paraquat and 1-methyl-4-phenylpyridine (MPP+) cytotoxicity. Biochem Biophys Res Commun 137:303–309

    Article  PubMed  CAS  Google Scholar 

  16. Cassarino DS, Parks JK, Parker WJ, Bennett JJ (1999) The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochim Biophys Acta 1453:49–62

    PubMed  CAS  Google Scholar 

  17. Luo Y, Qin Z, Hong Z, Zhang X, Ding D, Fu JH, Zhang WD, Chen J (2004) Astragaloside IV protects against ischemic brain injury in a murine model of transient focal ischemia. Neurosci Lett 363:218–223

    Article  PubMed  CAS  Google Scholar 

  18. Zhang WJ, Hufnagl P, Binder BR, Wojta J (2003) Antiinflammatory activity of astragaloside IV is mediated by inhibition of NF-kappaB activation and adhesion molecule expression. Thromb Haemost 90:904–914

    PubMed  CAS  Google Scholar 

  19. Zhang WD, Zhang C, Liu RH, Li HL, Zhang JT, Mao C, Moran S, Chen CL (2006) Preclinical pharmacokinetics and tissue distribution of a natural cardioprotective agent astragaloside IV in rats and dogs. Life Sci 79:808–815

    Article  PubMed  CAS  Google Scholar 

  20. Yang J, Li Y, Wu L, Zhang Z, Han T, Guo H, Jiang N, Tao K, Ti Z, Liu X, Yao L, Dou K (2010) NDRG2 in rat liver regeneration: role in proliferation and apoptosis. Wound Repair Regen 18:524–531

    Article  PubMed  Google Scholar 

  21. DoY Lee, Lee KS, Lee HJ, Noh YH, DoH Kim, Lee JY, Cho SH, Yoon OJ, Lee WB, Kim KY, Chung YH, Kim SS (2008) Kynurenic acid attenuates MPP+-induced dopaminergic neuronal cell death via a Bax-mediated mitochondrial pathway. Eur J Cell Biol 87:389–397

    Article  Google Scholar 

  22. LeBel CP, Ali SF, McKee M, Bondy SC (1990) Organometal-induced increases in oxygen reactive species: the potential of 2′,7′-dichlorofluorescin diacetate as an index of neurotoxic damage. Toxicol Appl Pharmacol 104:17–24

    Article  PubMed  CAS  Google Scholar 

  23. O’Malley KL, Liu J, Lotharius J, Holtz W (2003) Targeted expression of BCL-2 attenuates MPP+ but not 6-OHDA induced cell death in dopaminergic neurons. Neurobiol Dis 14:43–51

    Article  PubMed  Google Scholar 

  24. Kaul S, Kanthasamy A, Kitazawa M, Anantharam V, Kanthasamy AG (2003) Caspase-3 dependent proteolytic activation of protein kinase C delta mediates and regulates 1-methyl-4-phenylpyridinium (MPP+)-induced apoptotic cell death in dopaminergic cells: relevance to oxidative stress in dopaminergic degeneration. Eur J Neurosci 18:1387–1401

    Article  PubMed  Google Scholar 

  25. Adams JJ, Klaidman LK, Leung AC (1993) MPP+ and MPDP+ induced oxygen radical formation with mitochondrial enzymes. Free Radic Biol Med 15:181–186

    Article  PubMed  CAS  Google Scholar 

  26. Cheng CY, Yao CH, Liu BS, Liu CJ, Chen GW, Chen YS (2006) The role of astragaloside in regeneration of the peripheral nerve system. J Biomed Mater Res A 76:463–469

    PubMed  Google Scholar 

  27. Chan WS, Durairajan SS, Lu JH, Wang Y, Xie LX, Kum WF, Koo I, Yung KK, Li M (2009) Neuroprotective effects of astragaloside IV in 6-hydroxydopamine-treated primary nigral cell culture. Neurochem Int 55:414–422

    Article  PubMed  CAS  Google Scholar 

  28. Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of Parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80:4546–4550

    Article  PubMed  CAS  Google Scholar 

  29. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656

    Article  PubMed  CAS  Google Scholar 

  30. Tanaka K, Asanuma M, Ogawa N (2004) Molecular basis of anti-apoptotic effect of immunophilin ligands on hydrogen peroxide-induced apoptosis in human glioma cells. Neurochem Res 29:1529–1536

    Article  PubMed  CAS  Google Scholar 

  31. Levy OA, Malagelada C, Greene LA (2009) Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps. Apoptosis 14:478–500

    Article  PubMed  Google Scholar 

  32. Vila M, Jackson-Lewis V, Vukosavic S, Djaldetti R, Liberatore G, Offen D, Korsmeyer SJ, Przedborski S (2001) Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 98:2837–2842

    Article  PubMed  CAS  Google Scholar 

  33. Offen D, Beart PM, Cheung NS, Pascoe CJ, Hochman A, Gorodin S, Melamed E, Bernard R, Bernard O (1998) Transgenic mice expressing human Bcl-2 in their neurons are resistant to 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Proc Natl Acad Sci USA 95:5789–5794

    Article  PubMed  CAS  Google Scholar 

  34. Yang L, Matthews RT, Schulz JB, Klockgether T, Liao AW, Martinou JC, Penney JJ, Hyman BT, Beal MF (1998) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyride neurotoxicity is attenuated in mice overexpressing Bcl-2. J Neurosci 18:8145–8152

    PubMed  CAS  Google Scholar 

  35. Findley HW, Gu L, Yeager AM, Zhou M (1997) Expression and regulation of Bcl-2, Bcl-xl, and Bax correlate with p53 status and sensitivity to apoptosis in childhood acute lymphoblastic leukemia. Blood 89:2986–2993

    PubMed  CAS  Google Scholar 

  36. Li PF, Dietz R, von Harsdorf R (1999) p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J 18:6027–6036

    Article  PubMed  CAS  Google Scholar 

  37. Mandir AS, Przedborski S, Jackson-Lewis V, Wang ZQ, Simbulan-Rosenthal CM, Smulson ME, Hoffman BE, Guastella DB, Dawson VL, Dawson TM (1999) Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci USA 96:5774–5779

    Article  PubMed  CAS  Google Scholar 

  38. Gao M, Zhang WC, Liu QS, Hu JJ, Liu GT, Du GH (2008) Pinocembrin prevents glutamate-induced apoptosis in SH-SY5Y neuronal cells via decrease of bax/bcl-2 ratio. Eur J Pharmacol 591:73–79

    Article  PubMed  CAS  Google Scholar 

  39. Saporito MS, Thomas BA, Scott RW (2000) MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J Neurochem 75:1200–1208

    Article  PubMed  CAS  Google Scholar 

  40. Xia XG, Harding T, Weller M, Bieneman A, Uney JB, Schulz JB (2001) Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA 98:10433–10438

    Article  PubMed  CAS  Google Scholar 

  41. Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H, Srinivasan A, Ruberg M, Evan GI, Agid Y, Hirsch EC (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 97:2875–2880

    Article  PubMed  CAS  Google Scholar 

  42. Bronstein JM, Chou AP (2006) Peripheral proteasome and caspase activity in Parkinson disease and Alzheimer disease. Neurology 67:182 author reply 182

    Article  PubMed  Google Scholar 

  43. Ko JK, Lam FY, Cheung AP (2005) Amelioration of experimental colitis by astragalus membranaceus through anti-oxidation and inhibition of adhesion molecule synthesis. World J Gastroenterol 11:5787–5794

    PubMed  Google Scholar 

  44. Higuchi M, Honda T, Proske RJ, Yeh ET (1998) Regulation of reactive oxygen species-induced apoptosis and necrosis by caspase 3-like proteases. Oncogene 17:2753–2760

    Article  PubMed  CAS  Google Scholar 

  45. Gu Y, Wang G, Fawcett JP (2004) Determination of astragaloside IV in rat plasma by liquid chromatography electrospray ionization mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 801:285–288

    Article  CAS  Google Scholar 

  46. Zhang W, Zhang C, Liu R, Li H, Zhang J, Mao C, Chen C (2005) Quantitative determination of astragaloside IV, a natural product with cardioprotective activity, in plasma, urine and other biological samples by HPLC coupled with tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 822:170–177

    Article  CAS  Google Scholar 

  47. Huang C, Wang G, Li H, Xie H, Sun J, Lv H, Lv T (2006) Sensitive and selective liquid chromatography-electrospray ionisation-mass spectrometry analysis of astragaloside-IV in rat plasma. J Pharm Biomed Anal 40:788–793

    Article  PubMed  CAS  Google Scholar 

  48. Wen XD, Qi LW, Li P, Bao KD, Yan XW, Yi L, Li CY (2008) Simultaneous determination of calycosin-7-O-beta-d-glucoside, ononin, astragaloside IV, astragaloside I and ferulic acid in rat plasma after oral administration of Danggui Buxue Tang extract for their pharmacokinetic studies by liquid chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 865:99–105

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huai-zhou Qin or Guo-dong Gao.

Additional information

The first four authors contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement Fig. 1 Chemical structure of astragaloside IV (TIFF 427 kb)

11010_2011_1219_MOESM2_ESM.tif

Supplement Fig. 2 To select AS-IV concentrations for the subsequent experiments, MTT analysis was performed on SH-SY5Y cells. SH-SY5Y cells were treated with 0–200 μM AS-IV for 24 h (TIFF 570 kb)

11010_2011_1219_MOESM3_ESM.tif

Supplement Fig. 3 To select MPP+ concentrations for the subsequent experiments, MTT analysis was performed on the MPP+-induced SH-SY5Y cells. SH-SY5Y cells were treated with 0–6 mM MPP+ for 24 h (TIFF 502 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Zg., Wu, L., Wang, Jl. et al. Astragaloside IV prevents MPP+-induced SH-SY5Y cell death via the inhibition of Bax-mediated pathways and ROS production. Mol Cell Biochem 364, 209–216 (2012). https://doi.org/10.1007/s11010-011-1219-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1219-1

Keywords

Navigation