Skip to main content
Log in

Subcellular basis of vitamin C protection against doxorubicin-induced changes in rat cardiomyocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Understanding the molecular basis of doxorubicin (Dox)-induced cardiomyopathy is crucial to finding cardioprotective strategies. Oxidative stress-mediated pathways are known to contribute to cardiomyocyte apoptosis due to Dox. Improving the antioxidant defenses of cardiomyocytes could be one strategy for cardiac protection. We tested the effects of vitamin C (Vit C), a potent antioxidant, on Dox-induced cardiomyocyte apoptosis. Adult rat cardiomyocytes were incubated for 24 h with Dox (0.01–10 μM), with and without different concentrations of Vit C (5–100 μM). Exposure to Dox (10 μM) resulted in a 98% increase in the production of reactive oxygen species (ROS) and creatine kinase (CK) release, 70% increase in p53 as well as ASK-1 activation, 40% increase in p38 activation, 30% increase in pro-apoptotic Bax over anti-apoptotic Bcl-xl ratio and caspase activation, and about 20% reduction in cell viability. Vit C (25 μM) was able to mitigate Dox-induced changes by decreasing ROS and CK release by 50%, reducing p53 activation by 40%. The increase in ASK-1 and p38 was also significantly mitigated, and apoptosis was reduced while cardiomyocytes viability was improved. This study shows that Dox-induced cardiomyocyte death is mediated by a direct membrane effect as well as intracytoplasmic changes promoting the cardiomyocyte apoptosis. These findings suggest a nutritional approach of using Vit C for preventing Dox-induced cardiotoxicity and better management of cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339:900–905

    Article  PubMed  CAS  Google Scholar 

  2. Chatterjee K, Zhang J, Honbo N, Karliner JS (2010) Doxorubicin cardiomyopathy. Cardiology 115:155–162

    Article  PubMed  CAS  Google Scholar 

  3. Lefrak EA, Pitha J, Rosenheim S, Gottlieb JA (1973) A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 32:302–314

    Article  PubMed  CAS  Google Scholar 

  4. Yeh ET, Tong AT, Lenihan DJ, Yusuf SW, Swafford J, Champion C, Durand JB, Gibbs H, Zafarmand AA, Ewer MS (2004) Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation 109:3122–3131

    Article  PubMed  Google Scholar 

  5. Singal PK, Iliskovic N, Li T, Kumar D (1997) Adriamycin cardiomyopathy: pathophysiology and prevention. FASEB J 11:931–936

    PubMed  CAS  Google Scholar 

  6. Kumar D, Kirshenbaum LA, Li T, Danelisen I, Singal PK (2001) Apoptosis in adriamycin cardiomyopathy and its modulation by probucol. Antioxid Redox Signal 3:135–145

    Article  PubMed  CAS  Google Scholar 

  7. Lou H, Kaur K, Sharma AK, Singal PK (2006) Adriamycin-induced oxidative stress, activation of MAP kinases and apoptosis in isolated cardiomyocytes. Pathophysiology 13:103–109

    Article  PubMed  CAS  Google Scholar 

  8. Matsuzawa A, Nishitoh H, Tobiume K, Takeda K, Ichijo H (2002) Physiological roles of ASK1-mediated signal transduction in oxidative stress- and endoplasmic reticulum stress-induced apoptosis: advanced findings from ASK1 knockout mice. Antioxid Redox Signal 4:415–425

    Article  PubMed  CAS  Google Scholar 

  9. Matsuzawa A, Ichijo H (2008) Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta 1780:1325–1336

    Article  PubMed  CAS  Google Scholar 

  10. Lou H, Danelisen I, Singal PK (2005) Involvement of mitogen-activated protein kinases in adriamycin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol 288:H1925–H1930

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki K, Inageda K, Nishitai G, Matsuoka M (2007) Phosphorylation of p53 at serine 15 in A549 pulmonary epithelial cells exposed to vanadate: involvement of ATM pathway. Toxicol Appl Pharmacol 220:83–91

    Article  PubMed  CAS  Google Scholar 

  12. Gutteridge JM, Halliwell B (2000) Free radicals and antioxidants in the year 2000. A historical look to the future. Ann NY Acad Sci 899:136–147

    Article  PubMed  CAS  Google Scholar 

  13. Lykkesfeldt J, Poulsen HE (2010) Is vitamin C supplementation beneficial? Lessons learned from randomised controlled trials. Br J Nutr 103:1251–1259

    Article  PubMed  CAS  Google Scholar 

  14. Mayland CR, Bennett MI, Allan K (2005) Vitamin C deficiency in cancer patients. Palliat Med 19:17–20

    Article  PubMed  Google Scholar 

  15. Fujita K, Shinpo K, Yamada K, Sato T, Niimi H, Shamoto M, Nagatsu T, Takeuchi T, Umezawa H (1982) Reduction of adriamycin toxicity by ascorbate in mice and guinea pigs. Cancer Res 42:309–316

    PubMed  CAS  Google Scholar 

  16. Shimpo K, Nagatsu T, Yamada K, Sato T, Niimi H, Shamoto M, Takeuchi T, Umezawa H, Fujita K (1991) Ascorbic acid and adriamycin toxicity. Am J Clin Nutr 54:1298S–1301S

    PubMed  CAS  Google Scholar 

  17. Wold LE, Aberle NS 2nd, Ren J (2005) Doxorubicin induces cardiomyocyte dysfunction via a p38 MAP kinase-dependent oxidative stress mechanism. Cancer Detect Prev 29:294–299

    Article  PubMed  CAS  Google Scholar 

  18. Santos RV, Batista ML Jr, Caperuto EC, Costa Rosa LF (2007) Chronic supplementation of creatine and vitamins C and E increases survival and improves biochemical parameters after Doxorubicin treatment in rats. Clin Exp Pharmacol Physiol 34:1294–1299

    Article  PubMed  CAS  Google Scholar 

  19. Lai KB, Sanderson JE, Yu CM (2009) High dose norepinephrine-induced apoptosis in cultured rat cardiac fibroblast. Int J Cardiol 136:33–39

    Article  PubMed  Google Scholar 

  20. Chua CC, Liu X, Gao J, Hamdy RC, Chua BH (2006) Multiple actions of pifithrin-alpha on doxorubicin-induced apoptosis in rat myoblastic H9c2 cells. Am J Physiol Heart Circ Physiol 290:H2606–H2613

    Article  PubMed  CAS  Google Scholar 

  21. Sharma AK, Dhingra S, Khaper N, Singal PK (2007) Activation of apoptotic processes during transition from hypertrophy to heart failure in guinea pigs. Am J Physiol Heart Circ Physiol 293:H1384–H1390

    Article  PubMed  CAS  Google Scholar 

  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  23. McHowat J, Swift LM, Arutunyan A, Sarvazyan N (2001) Clinical concentrations of doxorubicin inhibit activity of myocardial membrane-associated, calcium-independent phospholipase A(2). Cancer Res 61:4024–4029

    PubMed  CAS  Google Scholar 

  24. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229

    Article  PubMed  CAS  Google Scholar 

  25. Ludke AR, Al-Shudiefat AA, Dhingra S, Jassal DS, Singal PK (2009) A concise description of cardioprotective strategies in doxorubicin-induced cardiotoxicity. Can J Physiol Pharmacol 87:756–763

    Article  PubMed  Google Scholar 

  26. Zhou S, Starkov A, Froberg MK, Leino RL, Wallace KB (2001) Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res 61:771–777

    PubMed  CAS  Google Scholar 

  27. Mizutani H, Tada-Oikawa S, Hiraku Y, Kojima M, Kawanishi S (2005) Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci 76:1439–1453

    Article  PubMed  CAS  Google Scholar 

  28. Quiles JL, Huertas JR, Battino M, Mataix J, Ramirez-Tortosa MC (2002) Antioxidant nutrients and adriamycin toxicity. Toxicology 180:79–95

    Article  PubMed  CAS  Google Scholar 

  29. Singal PK, Panagia V (1984) Direct effects of adriamycin on the rat heart sarcolemma. Res Commun Chem Pathol Pharmacol 43:67–77

    PubMed  CAS  Google Scholar 

  30. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  PubMed  CAS  Google Scholar 

  31. Galli RL, Shukitt-Hale B, Youdim KA, Joseph JA (2002) Fruit polyphenolics and brain aging: nutritional interventions targeting age-related neuronal and behavioral deficits. Ann NY Acad Sci 959:128–132

    Article  PubMed  CAS  Google Scholar 

  32. Steinberg D, Witztum JL (2002) Is the oxidative modification hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date refute the hypothesis? Circulation 105:2107–2111

    Article  PubMed  Google Scholar 

  33. Kang YJ, Zhou ZX, Wang GW, Buridi A, Klein JB (2000) Suppression by metallothionein of doxorubicin-induced cardiomyocyte apoptosis through inhibition of p38 mitogen-activated protein kinases. J Biol Chem 275:13690–13698

    Article  PubMed  CAS  Google Scholar 

  34. Qin F, Shite J, Liang CS (2003) Antioxidants attenuate myocyte apoptosis and improve cardiac function in CHF: association with changes in MAPK pathways. Am J Physiol Heart Circ Physiol 285:H822–H832

    PubMed  CAS  Google Scholar 

  35. Kim DS, Kim HR, Woo ER, Kwon DY, Kim MS, Chae SW, Chae HJ (2006) Protective effect of calceolarioside on adriamycin-induced cardiomyocyte toxicity. Eur J Pharmacol 541:24–32

    Article  PubMed  CAS  Google Scholar 

  36. Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569:1–9

    Article  PubMed  CAS  Google Scholar 

  37. Pei TX, Xu CQ, Li B, Zhang ZR, Gao XX, Yu J, Li HZ, Yang BF (2007) Protective effect of quercetin against adriamycin-induced cardiotoxicity and its mechanism in mice. Yao Xue Xue Bao 42:1029–1033

    PubMed  CAS  Google Scholar 

  38. Yoshida M, Shiojima I, Ikeda H, Komuro I (2009) Chronic doxorubicin cardiotoxicity is mediated by oxidative DNA damage-ATM-p53-apoptosis pathway and attenuated by pitavastatin through the inhibition of Rac1 activity. J Mol Cell Cardiol 47:698–705

    Article  PubMed  CAS  Google Scholar 

  39. Shizukuda Y, Matoba S, Mian OY, Nguyen T, Hwang PM (2005) Targeted disruption of p53 attenuates doxorubicin-induced cardiac toxicity in mice. Mol Cell Biochem 273:25–32

    Article  PubMed  CAS  Google Scholar 

  40. Liu X, Chua CC, Gao J, Chen Z, Landy CL, Hamdy R, Chua BH (2004) Pifithrin-alpha protects against doxorubicin-induced apoptosis and acute cardiotoxicity in mice. Am J Physiol Heart Circ Physiol 286:H933–H939

    Article  PubMed  CAS  Google Scholar 

  41. Zhang YW, Shi J, Li YJ, Wei L (2009) Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch Immunol Ther Exp (Warsz) 57:435–445

    Article  CAS  Google Scholar 

  42. Lebrecht D, Walker UA (2007) Role of mtDNA lesions in anthracycline cardiotoxicity. Cardiovasc Toxicol 7:108–113

    Article  PubMed  CAS  Google Scholar 

  43. Wallace KB (2007) Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovasc Toxicol 7:101–107

    Article  PubMed  CAS  Google Scholar 

  44. Sauberlich HE (1994) Pharmacology of vitamin C. Annu Rev Nutr 14:371–391

    Article  PubMed  CAS  Google Scholar 

  45. Amorati R, Ferroni F, Lucarini M, Pedulli GF, Valgimigli L (2002) A quantitative approach to the recycling of alpha-tocopherol by coantioxidants. J Org Chem 67:9295–9303

    Article  PubMed  CAS  Google Scholar 

  46. Losonczy KG, Harris TB, Havlik RJ (1996) Vitamin E and vitamin C supplement use and risk of all-cause and coronary heart disease mortality in older persons: the established populations for epidemiologic studies of the elderly. Am J Clin Nutr 64:190–196

    PubMed  CAS  Google Scholar 

  47. Kushi LH, Folsom AR, Prineas RJ, Mink PJ, Wu Y, Bostick RM (1996) Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. N Engl J Med 334:1156–1162

    Article  PubMed  CAS  Google Scholar 

  48. Halliwell B (2009) The wanderings of a free radical. Free Radic Biol Med 46:531–542

    Article  PubMed  CAS  Google Scholar 

  49. Verrax J, Calderon PB (2009) Pharmacologic concentrations of ascorbate are achieved by parenteral administration and exhibit antitumoral effects. Free Radic Biol Med 47:32–40

    Article  PubMed  CAS  Google Scholar 

  50. Goncalves TL, Erthal F, Corte CL, Muller LG, Piovezan CM, Nogueira CW, Rocha JB (2005) Involvement of oxidative stress in the pre-malignant and malignant states of cervical cancer in women. Clin Biochem 38:1071–1075

    Article  PubMed  CAS  Google Scholar 

  51. Padayatty SJ, Sun H, Wang Y, Riordan HD, Hewitt SM, Katz A, Wesley RA, Levine M (2004) Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med 140:533–537

    PubMed  CAS  Google Scholar 

  52. Meadows GG, Pierson HF, Abdallah RM (1991) Ascorbate in the treatment of experimental transplanted melanoma. Am J Clin Nutr 54:1284S–1291S

    PubMed  CAS  Google Scholar 

  53. Frei B, England L, Ames BN (1989) Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci USA 86:6377–6381

    Article  PubMed  CAS  Google Scholar 

  54. Niki E (1991) Action of ascorbic acid as a scavenger of active and stable oxygen radicals. Am J Clin Nutr 54:1119S–1124S

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The support from the Canadian Circulatory and Respiratory Institute (Dr. Singal) is greatly acknowledged. Mrs. Ana Ludke is supported by a studentship from Manitoba Health Research Council. Dr. Pawan Singal is holder of the Naranjan Dhalla Chair in Cardiovascular Research supported by the St. Boniface Hospital and Research Foundation.

Conflict of Interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan K. Singal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludke, A., Sharma, A.K., Bagchi, A.K. et al. Subcellular basis of vitamin C protection against doxorubicin-induced changes in rat cardiomyocytes. Mol Cell Biochem 360, 215–224 (2012). https://doi.org/10.1007/s11010-011-1059-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1059-z

Keywords

Navigation