Skip to main content
Log in

Targeted disruption of p53 attenuates doxorubicin-induced cardiac toxicity in mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Use of the chemotherapeutic agent doxorubicin (Dox) is limited by dose-dependent cardiotoxic effects. The molecular mechanism underlying these toxicities are incompletely understood, but previous results have demonstrated that Dox induces p53 expression. Because p53 is an important regulator of the cell birth and death we hypothesized that targeted disruption of the p53 gene would attenuate Dox-induced cardiotoxicity. To test this, female 6–8 wk old C57BL wild-type (WT) or p53 knockout (p53 KO) mice were randomized to either saline or Dox 20 mg/kg via intraperitoneal injection. Animals were serially imaged with high-frequency (14 MHz) two-dimensional echocardiography. Measurements of left ventricle (LV) systolic function as assessed by fractional shortening (FS) demonstrated a decline in WT mice as early as 4 days after Dox injection and by 2 wk demonstrated a reduction of 31± 16% (P < 0.05) from the baseline. In contrast, in p53 KO mice, LV FS was unchanged over the 2 wk period following Dox injection. Apoptosis of cardiac myocytes as measured by the TUNEL and ligase reactions were significantly increased at 24 h after Dox treatment in WT mice but not in p53 KO mice. After Dox injection, levels of myocardial glutathione and Cu/Zn superoxide dismutase were preserved in p53 KO mice, but not in WT animals. These observations suggest that p53 mediated signals are likely to play a significant role in Dox-induced cardiac toxicity and that they may modulate Dox-induced oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shan K, Lincoff AM, Young JB: Anthracycline-induced cardiotoxicity. Ann Intern Med 125: 47–58, 1996

    CAS  PubMed  Google Scholar 

  2. Hortobagyi GN: Anthracyclines in the treatment of cancer. An overview. Drugs 54: 1–7, 1997

    CAS  Google Scholar 

  3. Singal PK, Li T, Kumar D, Danelisen I, Iliskovic N: Adriamycin-induced heart failure: Mechanism and modulation. Mol Cell Biochem 207: 77–86, 2000

    Article  CAS  PubMed  Google Scholar 

  4. Sparano JA: Doxorubicin/taxane combinations: Cardiac toxicity and pharmacokinetics. Semin Oncol 26: 14–19, 1999

    CAS  Google Scholar 

  5. Sawyer DB, Fukazawa R, Arstall MA, Kelly RA: Daunorubicin-induced apoptosis in rat cardiac myocytes is inhibited by dexrazoxane. Circ Res 84: 257–265, 1999

    CAS  PubMed  Google Scholar 

  6. Kumar D, Kirshenbaum LA, Li T, Danelisen I, Singal PK: Apoptosis in adriamycin cardiomyopathy and its modulation by probucol. Antioxid Redox Signal 3: 135–145, 2001

    Article  CAS  PubMed  Google Scholar 

  7. Long X, Boluyt MO, Hipolito ML, Lundberg MS, Zheng JS, O’Neill L, Cirielli C, Lakatta EG, Crow MT: p53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes. J Clin Invest 99: 2635–2643, 1997

    CAS  PubMed  Google Scholar 

  8. Leri A, Liu Y, Malhotra A, Li Q, Stiegler P, Claudio PP, Giordano A, Kajstura J, Hintze TH, Anversa P: Pacing-induced heart failure in dogs enhances the expression of p53 and p53-dependent genes in ventricular myocytes. Circulation 97: 194–203, 1998

    CAS  PubMed  Google Scholar 

  9. Leri A, Claudio PP, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura J, Anversa P: Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest 101: 1326–1342, 1998

    Google Scholar 

  10. Lorenzo E, Ruiz-Ruiz C, Quesada AJ, Hernandez G, Rodriguez A, Lopez-Rivas A, Redondo JM: Doxorubicin induces apoptosis and CD95 gene expression in human primary endothelial cells through a p53-dependent mechanism. J Biol Chem 277: 10883–10892, 2002

    Article  CAS  PubMed  Google Scholar 

  11. Liem AA, Appleyard MV, O’Neill MA, Hupp TR, Chamberlain MP, Thompson AM: Doxorubicin and vinorelbine act independently via p53 expression and p38 activation respectively in breast cancer cell lines. Br J Cancer 88: 1281–1284, 2003

    Article  CAS  PubMed  Google Scholar 

  12. Liu X, Chua CC, Gao J, Chen Z, Landy CL, Hamdy R, Chua BH: Pifithrin-alpha protects against doxorubicin-induced apoptosis and acute cardiotoxicity in mice. Am J Physiol Heart Circ Physiol 286: H933–H939, 2004

    Article  CAS  PubMed  Google Scholar 

  13. Komarova EA, Gudkov AV: Suppression of p53: A new approach to overcome side effects of antitumor therapy. Biochemistry (Mosc) 65: 41–48, 2000

    CAS  Google Scholar 

  14. Bialik S, Geenen DL, Sasson IE, Cheng R, Horner JW, Evans SM, Lord EM, Koch CJ, Kitsis RN: Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J Clin Invest 100: 1363–1372, 1997

    CAS  PubMed  Google Scholar 

  15. Kown MH, Murata S, Jahncke CL, Mari C, Berry GJ, Lijkwan MA, Blankenberg FG, Strauss HW, Robbins RC: Donor cardiac allografts from p53 knockout mice exhibit apoptosis-independent prolongation of survival. Transpl Proc 34: 3274–3276, 2002

    Article  CAS  Google Scholar 

  16. Cerutti JM, Delcelo R, Amadei MJ, Nakabashi C, Maciel RM, Peterson B, Shoemaker J, Riggins GJ: A preoperative diagnostic test that distinguishes benign from malignant thyroid carcinoma based on gene expression. J Clin Invest 113: 1234–1242, 2004

    Article  CAS  PubMed  Google Scholar 

  17. Gardin JM, Siri FM, Kitsis RN, Edwards JG, Leinwand LA: Echocardiographic assessment of left ventricular mass and systolic function in mice. Circ Res 76: 907–914, 1995

    CAS  PubMed  Google Scholar 

  18. Hoit BD, Khoury SF, Kranias EG, Ball N, Walsh RA: In vivo echocardiographic detection of enhanced left ventricular function in gene-targeted mice with phospholamban deficiency. Circ Res 77: 632–637, 1995

    CAS  PubMed  Google Scholar 

  19. Pollick C, Hale SL, Kloner RA: Echocardiographic and cardiac Doppler assessment of mice. J Am Soc Echocardiogr 8: 602–610, 1995

    CAS  PubMed  Google Scholar 

  20. Shizukuda Y, Buttrick PM, Geenen DL, Borczuk AC, Kitsis RN, Sonnenblick EH: β-adrenergic stimulation causes cardiocyte apoptosis: Influence of tachycardia and hypertrophy. Am J Physiol 275: H961–H968, 1998

    CAS  PubMed  Google Scholar 

  21. Shizukuda Y, Helisch A, Yokota R, Ware JA: Downregulation of protein kinase Cδ acivity enhances endothelial cell adaptation to hypoxia. Circulation 100: 1909–1916, 1999

    CAS  PubMed  Google Scholar 

  22. Yoda Y, Nakazawa M, Abe T, Kawakami Z: Prevention of doxorubicin myocardial toxicity in mice by reduced glutathione. Cancer Res 46: 2551–2556, 1986

    CAS  PubMed  Google Scholar 

  23. Li T, Singal PK: Adriamycin-induced early changes in myocardial antioxidant enzymes and their modulation by probucol. Circulation 102: 2105–2110, 2000

    CAS  PubMed  Google Scholar 

  24. Meng Z: Oxidative damage of sulfur dioxide on various organs of mice: Sulfur dioxide is a systemic oxidative damage agent. Inhal Toxicol 15: 181–195, 2003

    Article  CAS  PubMed  Google Scholar 

  25. Cao Z, Li Y: The chemical inducibility of mouse cardiac antioxidants and phase 2 enzymes in vivo. Biochem Biophys Res Commun 317: 1080–1088, 2004

    Article  CAS  PubMed  Google Scholar 

  26. Johnson M, Dimitrov D, Vojta PJ, Barrett JC, Noda A, Pereira-Smith OM, Smith JR: Evidence for a p53-independent pathway for upregulation of SDI1/CIP1/WAF1/p21 RNA in human cells. Mol Carcinog 11: 59–64, 1994

    CAS  PubMed  Google Scholar 

  27. Hwang PM, Bunz F, Yu J, Rago C, Chan TA, Murphy MP, Kelso GF, Smith RA, Kinzler KW, Vogelstein B: Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells. Nat Med 7: 1111–1117, 2001

    Article  CAS  PubMed  Google Scholar 

  28. Waldman T, Zhang Y, Dillehay L, Yu J, Kinzler K, Vogelstein B, Williams J: Cell-cycle arrest versus cell death in cancer therapy. Nat Med 3: 1034–1036, 1997

    Article  CAS  PubMed  Google Scholar 

  29. Tokino T, Thiagalingam S, el-Deiry WS, Waldman T, Kinzler KW, Vogelstein B: p53 tagged sites from human genomic DNA. Hum Mol Genet 3: 1537–1542, 1994

    CAS  PubMed  Google Scholar 

  30. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B: A model for p53-induced apoptosis. Nature 389: 300–305, 1997

    Article  CAS  PubMed  Google Scholar 

  31. Haupt Y, Maya R, Kazaz A, Oren M: Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299, 1997

    Article  CAS  PubMed  Google Scholar 

  32. Kubbutat MH, Jones SN, Vousden KH: Regulation of p53 stability by Mdm2. Nature 387: 299–303, 1997

    Article  CAS  PubMed  Google Scholar 

  33. Vogelstein B, Lane D, Levine AJ: Surfing the p53 network. Nature 408: 307–310, 2000

    Article  CAS  PubMed  Google Scholar 

  34. Pierzchalski P, Reiss K, Cheng W, Cirielli C, Kajstura J, Nitahara JA, Rizk M, Capogrossi MC, Anversa P: p53 induces myocyte apoptosis via the activation of the renin-angiotensin system. Exp Cell Res 234: 57–65, 1997

    Article  CAS  PubMed  Google Scholar 

  35. Leri A, Liu Y, Claudio PP, Kajstura J, Wang X, Wang S, Kang P, Malhotra A, Anversa P: Insulin-like growth factor-1 induces Mdm2 and down-regulates p53, attenuating the myocyte renin-angiotensin system and stretch-mediated apoptosis. Am J Pathol 154: 567–580, 1999

    CAS  PubMed  Google Scholar 

  36. Kotamraju S, Konorev EA, Joseph J, Kalyanaraman B: Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species. J Biol Chem 275: 33585–33592, 2000

    Article  CAS  PubMed  Google Scholar 

  37. Mostafa MG, Mima T, Ohnishi ST, Mori K: S-allylcysteine ameliorates doxorubicin toxicity in the heart and liver in mice. Plant Med 66: 148–151, 2000

    Article  CAS  Google Scholar 

  38. Breitbart E, Lomnitski L, Nyska A, Malik Z, Bergman M, Sofer Y, Haseman JK, Grossman S: Effects of water-soluble antioxidant from spinach, NAO, on doxorubicin-induced heart injury. Hum Exp Toxicol 20: 337–345, 2001

    Article  CAS  PubMed  Google Scholar 

  39. Lipshultz SE, Rifai N, Dalton VM, Levy DE, Silverman LB, Lipsitz SR, Colan SD, Asselin BL, Barr RD, Clavell LA, Hurwitz CA, Moghrabi A, Samson Y, Schorin MA, Gelber RD, Sallan SE: The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med 351: 145–153, 2004

    Article  CAS  PubMed  Google Scholar 

  40. Johnson TM, Yu ZX, Ferrans VJ, Lowenstein RA, Finkel T: Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci USA 93: 11848–11852, 1996

    Article  CAS  PubMed  Google Scholar 

  41. Li PF, Dietz R, von Harsdorf R: p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. Embo J 18: 6027–6036, 1999

    Article  CAS  PubMed  Google Scholar 

  42. el-Missiry MA, Othman AI, Amer MA, Abd el-Aziz MA: Attenuation of the acute adriamycin-induced cardiac and hepatic oxidative toxicity by N-(2-mercaptopropionyl) glycine in rats. Free Radic Res 35: 575–581, 2001

    CAS  PubMed  Google Scholar 

  43. Mukherjee S, Banerjee SK, Maulik M, Dinda AK, Talwar KK, Maulik SK: Protection against acute adriamycin-induced cardiotoxicity by garlic: Role of endogenous antioxidants and inhibition of TNF-alpha expression. BMC Pharmacol 3: 16–24, 2003

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukitaka Shizukuda MD, PhD.

Additional information

These two authors equally contributed to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shizukuda, Y., Matoba, S., Mian, O.Y. et al. Targeted disruption of p53 attenuates doxorubicin-induced cardiac toxicity in mice. Mol Cell Biochem 273, 25–32 (2005). https://doi.org/10.1007/s11010-005-5905-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-5905-8

Keywords

Navigation