Skip to main content
Log in

Hoechst 33342 induced reactive oxygen species and impaired expression of cytochrome c oxidase subunit 1 leading to cell death in irradiated human cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Oxidative stress and mitochondrial dysfunction in cancer cells represent features that may be exploited therapeutically. We determined whether minor groove binding ligand Hoechst 33342, known to induce mitochondrial dysfunction via increase in reactive oxygen species (ROS), enhances killing of human head and neck cancer (KB) cells mediated by impaired expression of mitochondrial protein involved in electron transfer. Elevation in ROS generation, increase in ΔΨm, down regulation of cytochrome c oxidase (CO), alteration in expression of antioxidant enzymes viz. Mn-SOD and Catalase, and release of cytochrome c into the cytosol, were observed in time-dependent manner when cells were irradiated (5 Gy) in presence of Hoechst 33342. Persistent increase in ROS observed till 48 h following treatment decreased the clonogenic survival and viability to a large extent via increase in ΔΨm, release of cytochrome c and non-coordinated expression of antioxidant enzymes. Treatment with antioxidants PEG-MnSOD and PEG-catalase inhibited the increase in ROS and loss of cell survival, suggesting the involvement of ROS in the Hoechst 33342-induced cell death. The result demonstrated significant sensitization of cancer cells to radiation-induced toxicity in presence of Hoechst 33342 via increasing ROS to a toxic level and impairing CO expression and antioxidant enzymes. This understanding is expected to benefit both in elucidating the detailed mechanisms of actions of DNA interacting drug and designing better molecules for enhancing radiation-induced cell death among cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

mtDNA:

Mitochondrial DNA

ROS:

Reactive oxygen species

ΔΨm :

Mitochondrial membrane potential

CO:

Cytochrome c oxidase

CO1:

Cytochrome c oxidase sub unit 1

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide

H2DCFDA:

2′,7′-Dichlorofluorescein diacetate

TMRM:

Tetramethyl rhodamine methyl ester

JC-1:

5,5′,6,6′-Tetrachloro-1,1′, 3,3′-tetraethylbenzimidazolylcarbocyanine iodide

FCCP:

Carbonyl cyanide p-trifluoromethoxyphenylhydrazone

ETC:

Electron transport chain

HBSS:

Hanks-balanced salts solution

PEG:

Polyethylene glycol

PI:

Propidium iodide

References

  1. Oberley LW, Buettner GR (1979) Role of superoxide dismutase in cancer: a review. Cancer Res 39:1141–1149

    PubMed  CAS  Google Scholar 

  2. Konstantinov AA, Peskin AV, Popova E, Khomutov GB, Ruuge EK (1987) Superoxide generation by the respiratory chain of tumor mitochondria. Biochim Biophys Acta 894:1–10

    Article  PubMed  CAS  Google Scholar 

  3. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798

    PubMed  CAS  Google Scholar 

  4. Toyokuni S, Okamoto K, Yodoi J, Hiai H (1995) Persistent oxidative stress in cancer. FEBS Lett 358:1–3

    Article  PubMed  CAS  Google Scholar 

  5. Spitz DR, Sim JE, Ridnour LA, Galoforo SS, Lee YJ (2000) Glucose deprivation induced oxidative stress in human tumor cells: a fundamental defect in Metabolism. Ann N Y Acad Sci 899:349–362

    Article  PubMed  CAS  Google Scholar 

  6. Copeland WC, Wachsman JT, Johnson FM, Penta JS (2002) Mitochondrial DNA alterations in cancer. Cancer Invest 20:557–569

    Article  PubMed  CAS  Google Scholar 

  7. Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1:1–9

    Article  Google Scholar 

  8. Hlavata L, Aguilaniu H, Pichova A, Nystrom T (2003) The oncogenic RAS2 (val19) mutation locks respiration independently of PKA in a mode prone to generate ROS. EMBO J 22:3337–3345

    Article  PubMed  CAS  Google Scholar 

  9. Richter C, Gogvadze V, Laffranchi R, Schlapbach R, Schweizer M, Suter M, Walter P, Yaffee M (1995) Oxidants in mitochondria: from physiology to diseases. Biochim Biophys Acta 1271:67–74

    PubMed  Google Scholar 

  10. Yakes FM, Houten BV (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94:514–519

    Article  PubMed  CAS  Google Scholar 

  11. Athar M, Chaudhury NK, Hussain ME, Varshney R (2010) Hoechst 33342 induces radiosensitization in malignant glioma cells via increase in mitochondrial reactive oxygen species. Free Radic Res 44(8):936–949

    Article  PubMed  CAS  Google Scholar 

  12. Sharpe MA, Cooper CE (1998) Interactions of peroxynitrite with mitochondrial cytochrome oxidase: catalytic production of nitric oxide and irreversible inhibition of enzyme activity. J Biol Chem 273:30961–30972

    Article  PubMed  CAS  Google Scholar 

  13. Capaldi RA (1992) Structure and function of cytochrome oxidase. Annu Rev Biochem 59:569–596

    Article  Google Scholar 

  14. Hong MY, Chapkin RS, Barhoumi R, Burghardt RC, Turner ND, Henderson CE, Sanders LM, Fan YY, Davidson LA, Murphy ME et al (2002) Fish oil increases mitochondrial phospholipid unsaturation, up-regulating reactive oxygen species and apoptosis in rat colonocytes. Carcinogenesis 23:1919–1925

    Article  PubMed  CAS  Google Scholar 

  15. Yang Z, Schumaker LM, Egorin MJ, Zuhowski EG, Guo Z, Cullen KJ (2006) Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis. Clin Cancer Res 12(19):5817–5825

    Article  PubMed  CAS  Google Scholar 

  16. Garrido N, Perez-Martos A, Faro M, Lou-Bonafonte JM, Fernandez-Silva P, Lopez-Perez MJ, Montoya J, Enriquez JA (2008) Cisplatin-mediated impairment of mitochondrial DNA metabolism inversely correlates with glutathione levels. Biochem J 414:93–102

    Article  PubMed  CAS  Google Scholar 

  17. Dwarakanath BS, Jain VK (1989) Energy linked modifications of the radiation response in a human cerebral glioma cell line. Int J Radiat Oncol Biol Phys 17:1033–1040

    Article  Google Scholar 

  18. Rothe G, Valet G (1990) Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2′,7′-dichlorofluorescin. J Leukocyte Biol 47:440–448

    PubMed  CAS  Google Scholar 

  19. Lund KC, Wallace KB (2008) Adenosine 3′,5′-cyclic monophosphate (cAMP)-dependent phosphoregulation of mitochondrial complex I is inhibited by nucleoside reverse transcriptase inhibitors. Toxicol Appl Pharmacol 226(1):94–106

    Article  PubMed  CAS  Google Scholar 

  20. Lee HC, Yin PH, Lu CY, Chi CW, Wei YH (2000) Increase of mitochondria and mitochondrial DNA in response to oxidative stress in human cells. Biochem J 348:425–432

    Article  PubMed  CAS  Google Scholar 

  21. Vermes I, Haanen C, Steffens-Nakken H, Reutellingsperger C (1995) A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J Immunol Methods 184:39–51

    Article  PubMed  CAS  Google Scholar 

  22. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  23. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–6428

    Article  PubMed  CAS  Google Scholar 

  24. Li YZ, Li CJ, Pinto AV, Pardee AB (1999) Release of mitochondrial cytochrome c in both apoptosis and necrosis induced by b-lapachone in human carcinoma cells. Mol Med 5:232–239

    PubMed  Google Scholar 

  25. Samali A, Nordgren H, Zhivotovsky B, Peterson E, Orrenius SA (1999) Comparative study of apoptosis and necrosis in HepG2 cells: oxidant-induced caspase inactivation leads to necrosis. Biochem Biophys Res Commun 255:6–11

    Article  PubMed  CAS  Google Scholar 

  26. Tawar U, Jain AK, Chandra R, Singh Y, Dwarakanath BS, Chaudhury NK, Good L, Tandon V (2003) Minor groove binding DNA ligands with expanded A/T sequence length recognition, selective binding to bent DNA regions and enhanced fluorescent properties. Biochemistry 42:13339–13346

    Article  PubMed  CAS  Google Scholar 

  27. Haq I, Ladbury JE, Chowdhry BZ, Jenkins TC, Chaires JB (1997) Specific binding of Hoechst 33258 to the d (CGCAAATTTGCG) 2 duplex: calorimetric and spectroscopic studies. J Mol Biol 271:244–257

    Article  PubMed  CAS  Google Scholar 

  28. Harshman KD, Dervan PB (1985) Molecular recognition of B-DNA by Hoechst 33258. Nucleic Acids Res 13:4825–4835

    Article  PubMed  CAS  Google Scholar 

  29. Mabalirajan U, Dinda AK, Kumar S, Roshan R, Gupta P, Sharma SK, Ghosh B (2008) Mitochondrial structural changes and dysfunction are associated with experimental allergic asthma. J Immunol 181:3540–3548

    PubMed  CAS  Google Scholar 

  30. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  PubMed  CAS  Google Scholar 

  31. Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez JA, Robinson JP (2003) DPI induces mitochondrial superoxide-mediated apoptosis. Free Radic Biol Med 34:465–477

    Article  PubMed  Google Scholar 

  32. Orrenius S (2007) Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev 39:443–455

    Article  PubMed  CAS  Google Scholar 

  33. Ozben T (2007) Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci 96:2181–2196

    Article  PubMed  CAS  Google Scholar 

  34. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15

    Article  PubMed  CAS  Google Scholar 

  35. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    Article  PubMed  CAS  Google Scholar 

  36. Tan S, Sagara Y, Liu Y, Maher P, Schubert D (1998) The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 141:1423–1432

    Article  PubMed  CAS  Google Scholar 

  37. Zhang X, Kiechle FL (2006) Fatty acid synthase and its mRNA concentrations are decreased at different times following Hoechst 33342-induced apoptosis in BC3H-1 myocytes. Ann Clin Lab Sci 36:185–193

    PubMed  CAS  Google Scholar 

  38. Lee JP, Kim SY, Kil IS, Park J (2007) Regulation of ionizing radiation-induced apoptosis by mitochondrial NADP+-dependent isocitrate dehydrogenase. J Biol Chem 282(18):13385–13394

    Article  PubMed  CAS  Google Scholar 

  39. Ahmad IM, Aykin-Burns N, Sim JE et al (2005) Mitochondrial O 2 and H2O2 mediate glucose deprivation-induced cytotoxicity and oxidative stress in human cancer cells. J Biol Chem 280:4254–4263

    Article  PubMed  CAS  Google Scholar 

  40. Veronese FM, Caliceti P, Schiavon O, Sergi M (2002) Polyethylene glycol-superoxide dismutase, a conjugate in search of exploitation. Adv Drug Deliv Rev 54:587–606

    Article  PubMed  CAS  Google Scholar 

  41. Kim GJ, Chandrasekaran K, Morgan WF (2006) Mitochondrial dysfunction, persistently elevated levels of reactive oxygen species and radiation-induced genomic instability: a review. Mutagenesis 21:361–367

    Article  PubMed  CAS  Google Scholar 

  42. Vander-Heiden MG, Chandel NS, Li XX, Schumacker PT, Colombini M, Thompson CB (2000) Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci USA 97:4666–4671

    Article  PubMed  CAS  Google Scholar 

  43. Ramachandran A, Moellering DR, Ceaser E, Shiva S, Xu J, Darley-Usmar V (2002) Inhibition of mitochondrial protein synthesis results in increased endothelial cell susceptibility to nitric oxide-induced apoptosis. Proc Natl Acad Sci USA 99(10):6643–6648

    Article  PubMed  CAS  Google Scholar 

  44. Gong B, Chen Q, Almasan A (1998) Ionizing radiation stimulates mitochondrial gene expression and activity. Radiat Res 150(5):505–512

    Article  PubMed  CAS  Google Scholar 

  45. Robinson NC (1993) Functional binding of cardiolipin to cytochrome c oxidase. J Bioenerg Biomembr 25:153–163

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. R.P. Tripathi, Director, Institute of Nuclear Medicine and Allied Sciences for support and constant encouragement. We also thank to Mrs Namita Kalra for help in flow cytometric measurement. This work was carried out as part of a project (INM 301) supported by DRDO from the Ministry of Defense, Government of India. Mr. Mohammad Athar is a recipient of ICMR fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Varshney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Athar, M., Chaudhury, N.K., Hussain, M.E. et al. Hoechst 33342 induced reactive oxygen species and impaired expression of cytochrome c oxidase subunit 1 leading to cell death in irradiated human cancer cells. Mol Cell Biochem 352, 281–292 (2011). https://doi.org/10.1007/s11010-011-0764-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0764-y

Keywords

Navigation