Skip to main content
Log in

Inhibition of mitochondrial respiratory chain in the brain of rats after hepatic failure induced by acetaminophen

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hepatic encephalopathy is an important cause of morbidity and mortality in patients with severe hepatic failure. This disease is clinically characterized by a large variety of symptoms including motor symptoms, cognitive deficits, as well as changes in the level of alertness up to hepatic coma. Acetaminophen is frequently used in animals to produce an experimental model to study the mechanisms involved in the progression of hepatic disease. The brain is highly dependent on ATP and most cell energy is obtained through oxidative phosphorylation, a process requiring the action of various respiratory enzyme complexes located in a special structure of the inner mitochondrial membrane. In this context, the authors evaluated the activities of mitochondrial respiratory chain complexes in the brain of rats submitted to acute administration of acetaminophen and treated with the combination of N-acetylcysteine (NAC) plus deferoxamine (DFX) or taurine. These results showed that acetaminophen administration inhibited the activities of complexes I and IV in cerebral cortex and that the treatment with NAC plus DFX or taurine was not able to reverse this inhibition. The authors did not observe any effect of acetaminophen administration on complexes II and III activities in any of the structures studied. The participation of oxidative stress has been postulated in the hepatic encephalopathy and it is well known that the electron transport chain itself is vulnerable to damage by reactive oxygen species. Since there was no effect of NAC + DFX, the effect of acetaminophen was likely to be due to something else than oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Diaz-Munoz M, Tapia R (1989) Functional changes of brain mitochondria during experimental hepatic encephalopathy. Biochem Pharmacol 38:3835–3841

    Article  PubMed  CAS  Google Scholar 

  2. Gazzard BG, Price H, Dawson AM (1986) Detection of hepatic encephalopathy. Postgrad Med J 62:163–166

    Article  PubMed  CAS  Google Scholar 

  3. Riordan SM, Williams R (1997) Treatment of hepatic encephalopathy. N Engl J Med 1:473–479

    Article  Google Scholar 

  4. Rama Rao KV, Jayakumar AR, Norenberg DM (2003) Ammonia neurotoxicity: role of the mitochondrial permeability transition. Metab Brain Dis 18:113–127

    Article  PubMed  CAS  Google Scholar 

  5. Szymonik-Lesiuk S, Czechowska G, Stryjecka-Zimmer M, Słomka M, Madro A, Celiński K, Wielosz M (2003) Catalase, superoxide dismutase, and glutathione peroxidase activities in various rat tissues after carbon tetrachloride intoxication. J Hepatobiliary Pancreat Surg 10:309–315

    Article  PubMed  Google Scholar 

  6. Ritter C, Cunha AA, Echer IC, Andrades M, Reinke A, Lucchiari N, Rocha J, Streck EL, Menna-Barreto S, Moreira JC, Dal-Pizzol F (2006) Effects of N-acetylcysteine plus deferoxamine in lipopolysaccharide-induced acute lung injury in the rat. Crit Care Med 34:471–477

    Article  PubMed  CAS  Google Scholar 

  7. Pawa S, Ali S (2004) Liver necrosis and fulminant hepatic failure in rats: protection by oxyanionic form of tungsten. Biochim Biophys Acta 1688:210–222

    PubMed  CAS  Google Scholar 

  8. Ganey PE, Luyendyk JP, Newport SW, Eagle TM, Maddox JF, Mackman N, Roth RA (2007) Role of the coagulation system in acetaminophen-induced hepatotoxicity in mice. Hepatology 46:1177–1186

    Article  PubMed  CAS  Google Scholar 

  9. Grypioti AD, Theocharis SE, Papadimas GK, Demopoulos CA, Papadopoulou-Daifoti Z, Basayiannis AC, Mykoniatis MG (2005) Platelet-activating factor (PAF) involvement in acetaminophen-induced liver toxicity and regeneration. Arch Toxicol 79:466–474

    Article  PubMed  CAS  Google Scholar 

  10. Jamshidzadeh A, Baghban M, Azarpira N, Bardbori AM, Niknahad H (2008) Effects of tomato extract on oxidative stress induced toxicity in different organs of rats. Food Chem Toxicol 46:3612–3615

    Article  PubMed  CAS  Google Scholar 

  11. Smith SW, Howland MA, Hoffman RS, Nelson LS (2008) Acetaminophen overdose with altered acetaminophen pharmacokinetics and hepatotoxicity associated with premature cessation of intravenous N-acetylcysteine therapy. Ann Pharmacother 42:1333–1339

    Article  PubMed  CAS  Google Scholar 

  12. Cigremis Y, Turel H, Adiguzel K, Akgoz M, Kart A, Karaman M, Ozen H (2009) The effects of acute acetaminophen toxicity on hepatic mRNA expression of SOD, CAT, GSH-Px, and levels of peroxynitrite, nitric oxide, reduced glutathione, and malondialdehyde in rabbit. Mol Cell Biochem 323:31–38

    Article  PubMed  CAS  Google Scholar 

  13. Ritter C, Reinke A, Andrades M, Martins MR, Rocha J, Menna-Barreto S, Quevedo J, Moreira JC, Dal-Pizzol F (2004) Protective effect of N-acetylcysteine and deferoxamine on carbon tetrachloride-induced acute hepatic failure in rats. Crit Care Med 32:2079–2083

    Article  PubMed  CAS  Google Scholar 

  14. Ritter C, Andrades ME, Reinke A, Menna-Barreto S, Moreira JC, Dal-Pizzol F (2004) Treatment with N-acetylcysteine plus deferoxamine protects rats against oxidative stress and improves survival in sepsis. Crit Care Med 32:342–349

    Article  PubMed  CAS  Google Scholar 

  15. Damiani CR, Benetton CA, Stoffel C, Bardini KC, Cardoso VH, Di Giunta G, Pinho RA, Dal-Pizool F, Streck EL (2007) Oxidative stress and metabolism in animal model of colitis induced by dextran sulfate sodium. J Gastroenterol Hepatol 22:1846–1851

    Article  PubMed  CAS  Google Scholar 

  16. Di-Pietro PB, Dias ML, Scaini G, Burigo M, Constantino L, Machado RA, Dal-Pizzol StreckEL (2008) Inhibition of brain creatine kinase activity after renal ischemia is attenuated by N-acetylcysteine and deferoxamine administration. Neurosci Lett 434:139–143

    Article  PubMed  CAS  Google Scholar 

  17. Zapelini PH, Rezin GT, Cardoso MR, Ritter C, Klamt F, Moreira JC, Streck EL, Dal-Pizzol F (2008) Antioxidant treatment reverses mitochondrial dysfunction in a sepsis animal model. Mitochondrion 8:211–218

    Article  PubMed  CAS  Google Scholar 

  18. Repine JE, Bast B, Lankhorst I (1997) Oxidative stress in chronic obstructive pulmonary disease. Am J Resp Crit Care Med 156:341–357

    PubMed  CAS  Google Scholar 

  19. Halliwell B (1987) Oxidants and human disease: some new concepts. FASEB J 1:358–364

    PubMed  CAS  Google Scholar 

  20. Halliwell B (1989) Protection against tissue damage in vivo by desferrioxamine: what is its mechanism of action? Free Radic Biol Med 7:645–651

    Article  PubMed  CAS  Google Scholar 

  21. Wang GH, Jiang ZL, Fan XJ, Zhang L, Li X, Ke KF (2007) Neuroprotective effect of taurine against focal cerebral ischemia in rats possibly mediated by activation of both GABAA and glycine receptors. Neuropharmacology 52:1199–1209

    Article  PubMed  CAS  Google Scholar 

  22. Richards DA, Lemos T, Whitton PS, Bowery NG (1995) Extracellular GABA in the ventrolateral thalamus of rats exhibiting spontaneous absence epilepsy: a microdialysis study. J Neurochem 65:1674–1680

    Article  PubMed  CAS  Google Scholar 

  23. El Idrissi A, Trenkner E (1999) Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J Neurosci 19:9459–9468

    PubMed  CAS  Google Scholar 

  24. Kuiyama K (1980) Taurine as a neuromodulator. Fed Proc 39:2680–2684

    Google Scholar 

  25. Sturman JA (1993) Taurine in development. Physiol Rev 73:119–147

    PubMed  CAS  Google Scholar 

  26. Tos-Luty S, Obuchowska-Przebi D, Latuszynska J, Tokarska-Rodak M, Haratym-Maj A (2003) Dermal and oral toxicity of malathion in rats. Ann Agric Environ Med 10:101–106

    PubMed  CAS  Google Scholar 

  27. Carlson K, Ehrich M (1999) Organophosphorus compound induced modification of SH-SY5Y human neuroblastoma mitochondrial transmembrane potential. Toxicol Appl Pharmacol 160:33–42

    Article  PubMed  CAS  Google Scholar 

  28. Beal MF (1998) Mitochondrial dysfunction in neurodegenerative diseases. Biochim Biophys Acta 1366:211–223

    Article  PubMed  CAS  Google Scholar 

  29. Barja G, Herrero A (1998) Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondria in the short-lived rat than in the longevous pigeon. J Bioenerg Biomembr 30:235–243

    Article  PubMed  CAS  Google Scholar 

  30. Lowry OH, Rosebough NG, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  31. Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316

    Article  PubMed  CAS  Google Scholar 

  32. Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM, Sengers RC, Janssen AJ (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–26

    Article  PubMed  CAS  Google Scholar 

  33. Rustin P, Chretien D, Bourgeron T, Gérard B, Rötig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    Article  PubMed  CAS  Google Scholar 

  34. Adam-Vizi V (2005) Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal 7:1140–1149

    Article  PubMed  CAS  Google Scholar 

  35. Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am. J Physiol Cell Physiol 292:670–686

    Article  Google Scholar 

  36. Sen T, Sen N, Jana S, Khan FH, Chatterjee U, Chakrabarti S (2007) Depolarization and cardiolipin depletion in aged rat brain mitochondria: relationship with oxidative stress and electron transport chain activity. Neurochem Int 50:719–725

    Article  PubMed  CAS  Google Scholar 

  37. Gruno M, Peet N, Tein A, Salupere R, Sirotkina M, Valle J, Peetsalu A, Seppet EK (2008) Atrophic gastritis: deficient complex I of the respiratory chain in the mitochondria of corpus mucosal cells. J Gastroenterol 43:780–788

    Article  PubMed  CAS  Google Scholar 

  38. Gassner B, Wuthrich A, Scholtysik G, Solioz M (1997) The pyrethroids permethrin and cyhalothrin are potent inhibitors of the mitochondrial complex I. J Pharmacol Exp Ther 281:855–860

    PubMed  CAS  Google Scholar 

  39. Kelly JH, Koussayes T, Da-hertte HE, Chong MG, Shang TA, Wissenbrot HH, Sussman NC (1992) An improved model of acetaminophen-induced fulminant hepatic failure in dogs. Hepatol 15:329–335

    Article  CAS  Google Scholar 

  40. Francavilla A, Makowka L, Polimeno L, Barone M, Demetris J, Prelich J, Van Thiel DH, Starzl TE (1989) A dog model for acetaminophen-induced fulminant hepatic failure. Gastroenterology 96:470–478

    PubMed  CAS  Google Scholar 

  41. Lauterburg BH (2000) Analgesics and glutathione. Am J Ther 9:225–233

    Article  Google Scholar 

  42. Felipo V, Butterworth RF (2002) Neurobiology of ammonia. Prog Neurobiol 67:259–279

    Article  PubMed  CAS  Google Scholar 

  43. Rao KVR, Mawal YR, Qureshi IA (1997) Progressive decrease of cerebral cytochrome c oxidase activity in sparse-fur mice: role of acetyl-# -carnitine in restoring the ammonia-induced cerebral energy depletion. Neurosci Lett 224:83–86

    Article  PubMed  CAS  Google Scholar 

  44. Qureshi K, Rao KV, Qureshi IA (1998) Differential inhibition by hyperammonemia of the electron transport chain enzymes in synaptosomes and nonsynaptic mitochondria in ornithine transcarbamylase-deficient spfmice: restoration by acetyl-l-carnitine. Neurochem Res 23:855–861

    Article  PubMed  CAS  Google Scholar 

  45. Bai G, Murthy CRK, Norenberg MD (2000) Ammonia induces the mitochondrial permeability transition in cultured astrocytes. Soc Neurosci Abstr 26:1893

    Google Scholar 

  46. Brusilow SW, Traystman RJ (2000) Letter to editor. N Engl J Med 314:786

    Google Scholar 

  47. Takahashi H, Koehler RC, Brusilow SW, Traystman RJ (1991) Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am J Physiol 261:H825–H829

    PubMed  CAS  Google Scholar 

  48. Hawkins RA, Jessy J, Mans AM, De Joseph MR (1993) Effect of reducing brain glutamine synthesis on metabolic symptoms of hepatic encephalopathy. J Neurochem 60:1000–1006

    Article  PubMed  CAS  Google Scholar 

  49. Zieminska E, Dolinska M, Lazarewicz JW, Albrecht J (2000) Induction of permeability transition and swelling of rat brain mitochondria by glutamine. Neurotoxicology 21:295–300

    PubMed  CAS  Google Scholar 

  50. Mehrotra S, Kakkar P, Viswanathan PN (1991) Mitochondrial damage by active oxygen species in vitro. Free Rad Biol Med 10:277–286

    Article  PubMed  CAS  Google Scholar 

  51. Konarski M, Stewart RE, McCarty R (1990) Predictability of chronic intermittent stress: effects on sympathetic-adrenal medullary responses of laboratory rats. Behav Neural Biol 53:231–243

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from Programa de Pós-graduação em Ciências da Saúde—Universidade do Extremo Sul Catarinense (UNESC) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio L. Streck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panatto, J.P., Jeremias, I.C., Ferreira, G.K. et al. Inhibition of mitochondrial respiratory chain in the brain of rats after hepatic failure induced by acetaminophen. Mol Cell Biochem 350, 149–154 (2011). https://doi.org/10.1007/s11010-010-0689-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0689-x

Keywords

Navigation