Skip to main content
Log in

LAT1 overexpression and function compensates downregulation of ASCT2 in an in vitro model of renal proximal tubule cell ageing

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Amino acid transporters provide cells neutral amino acids indispensable for growth and proliferation-dependent protein synthesis. This study evaluates whether prolonged serial cell passaging during 6 months (over 50 passages) may induce changes in amino acid transporters properties in Opossum kidney (OK) proximal tubular cells. High passage OK cells exhibit polyploidy, but no difference in the proliferation potential was observed when compared to low passage OK cells. Increased time in culture was accompanied by an increased total, membrane and cytosol protein content. The Na+-insensitive [14C]-l-leucine uptake was promoted almost exclusively thought LAT1 (~ 90 vs 80%, high versus low passage OK cells). The increased LAT1 protein abundance in high passage OK cells correlated positively with enhanced ability to take up [14C]-l-leucine, despite a 4.3-fold decrease in affinity for the substrate. The Na+-sensitive [14C]-l-alanine transport was decreased by 2.5-fold in high passage OK cells. However, no differences in ASCT2 expression were observed between high and low passage OK cells. It is concluded that OK cells show functional differences in both l-leucine and l-alanine uptake as a function of passage time in culture. The increased expression and activity of LAT1 in high passage OK cells may correspond to a mechanism enabling the cell to develop the hypertrophy response to prolonged cell passaging, when the function of ASCT2 is markedly depressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Palacin M, Estevez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78(4):969–1054

    CAS  PubMed  Google Scholar 

  2. Verrey F, System L (2003) Heteromeric exchangers of large, neutral amino acids involved in directional transport. Pflugers Arch 445(5):529–533

    CAS  PubMed  Google Scholar 

  3. Wagner CA, Lang F, Broer S (2001) Function and structure of heterodimeric amino acid transporters. Am J Physiol Cell Physiol 281(4):C1077–C1093

    CAS  PubMed  Google Scholar 

  4. Kanai Y, Endou H (2001) Heterodimeric amino acid transporters: molecular biology and pathological and pharmacological relevance. Curr Drug Metab 2(4):339–354

    Article  CAS  PubMed  Google Scholar 

  5. Mastroberardino L, Spindler B, Pfeiffer R, Skelly PJ, Loffing J, Shoemaker CB, Verrey F (1998) Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395(6699):288–291

    Article  CAS  PubMed  Google Scholar 

  6. Palacin M, Borsani G, Sebastio G (2001) The molecular bases of cystinuria and lysinuric protein intolerance. Curr Opin Genet Dev 11(3):328–335

    Article  CAS  PubMed  Google Scholar 

  7. Verrey F, Ristic Z, Romeo E, Ramadan T, Makrides V, Dave MH, Wagner CA, Camargo SM (2005) Novel renal amino acid transporters. Annu Rev Physiol 67:557–572

    Article  CAS  PubMed  Google Scholar 

  8. Zhou XJ, Rakheja D, Yu X, Saxena R, Vaziri ND, Silva FG (2008) The aging kidney. Kidney Int 74(6):710–720

    Article  CAS  PubMed  Google Scholar 

  9. Melk A, Mansfield ES, Hsieh SC, Hernandez-Boussard T, Grimm P, Rayner DC, Halloran PF, Sarwal MM (2005) Transcriptional analysis of the molecular basis of human kidney aging using cDNA microarray profiling. Kidney Int 68(6):2667–2679

    Article  CAS  PubMed  Google Scholar 

  10. Blalock EM, Porter NM, Landfield PW (1999) Decreased G-protein-mediated regulation and shift in calcium channel types with age in hippocampal cultures. J Neurosci 19(19):8674–8684

    CAS  PubMed  Google Scholar 

  11. Huang W, Carlsen B, Rudkin GH, Shah N, Chung C, Ishida K, Yamaguchi DT, Miller TA (2001) Effect of serial passage on gene expression in MC3T3–E1 preosteoblastic cells: a microarray study. Biochem Biophys Res Commun 281(5):1120–1126

    Article  CAS  PubMed  Google Scholar 

  12. Moon SK, Cha BY, Kim CH (2003) In vitro cellular aging is associated with enhanced proliferative capacity, G1 cell cycle modulation, and matrix metalloproteinase-9 regulation in mouse aortic smooth muscle cells. Arch Biochem Biophys 418(1):39–48

    Article  CAS  PubMed  Google Scholar 

  13. Xiong J, Camello PJ, Verkhratsky A, Toescu EC (2004) Mitochondrial polarisation status and [Ca2+]i signalling in rat cerebellar granule neurones aged in vitro. Neurobiol Aging 25(3):349–359

    Article  CAS  PubMed  Google Scholar 

  14. Arthur JM (2000) The MDCK cell line is made up of populations of cells with diverse resistive and transport properties. Tissue Cell 32(5):446–450

    Article  CAS  PubMed  Google Scholar 

  15. Cottam DM, Milner MJ (1997) Effect of age on the growth and response of a drosophila cell line to moulting hormone. Tissue Cell 29(6):727–732

    Article  CAS  PubMed  Google Scholar 

  16. Yu H, Cook TJ, Sinko PJ (1997) Evidence for diminished functional expression of intestinal transporters in Caco-2 cell monolayers at high passages. Pharm Res 14(6):757–762

    Article  CAS  PubMed  Google Scholar 

  17. Gomes P, Xu J, Serrao P, Doria S, Jose PA, Soares-da-Silva P (2002) Expression and function of sodium transporters in two opossum kidney cell clonal sublines. Am J Physiol Renal Physiol 283(1):F73–F85

    CAS  PubMed  Google Scholar 

  18. Koyama H, Goodpasture C, Miller MM, Teplitz RL, Riggs AD (1978) Establishment and characterization of a cell line from the American opossum (Didelphys virginiana). In Vitro 14(3):239–246

    Article  CAS  PubMed  Google Scholar 

  19. Silva E, Soares-da-Silva P (2007) Reactive oxygen species and the regulation of renal Na+-K+-ATPase in opossum kidney cells. Am J Physiol Regul Integr Comp Physiol 293(4):R1764–R1770

    CAS  PubMed  Google Scholar 

  20. Silva E, Soares-da-Silva P (2009) Protein cytoskeleton and overexpression of Na+-K+-ATPase in opossum kidney cells. J Cell Physiol 221(2):318–324

    Article  CAS  PubMed  Google Scholar 

  21. Pinho MJ, Pinto V, Serrao MP, Jose PA, Soares-da-Silva P (2007) Underexpression of the Na+-dependent neutral amino acid transporter ASCT2 in the spontaneously hypertensive rat kidney. Am J Physiol Regul Integr Comp Physiol 293(1):R538–R547

    CAS  PubMed  Google Scholar 

  22. Pinho MJ, Serrao MP, Jose PA, Soares-da-Silva P (2007) Overexpression of non-functional LAT1/4F2hc in renal proximal tubular epithelial cells from the spontaneous hypertensive rat. Cell Physiol Biochem 20(5):535–548

    Article  CAS  PubMed  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  24. Abdolzade-Bavil A, Hayes S, Goretzki L, Kroger M, Anders J, Hendriks R (2004) Convenient and versatile subcellular extraction procedure, that facilitates classical protein expression profiling and functional protein analysis. Proteomics 4(5):1397–1405

    Article  CAS  PubMed  Google Scholar 

  25. Motulsky HJ (1999) Analyzing data with graphpad prism, version 3.0 edn. GraphPad Prism Software, San Diego

    Google Scholar 

  26. Prasad PD, Wang H, Huang W, Kekuda R, Rajan DP, Leibach FH, Ganapathy V (1999) Human LAT1, a subunit of system l amino acid transporter: molecular cloning and transport function. Biochem Biophys Res Commun 255(2):283–288

    Article  CAS  PubMed  Google Scholar 

  27. Kimmich GA, Randles J, Wilson J (1994) Na+-coupled alanine transport in LLC-PK1 cells. Am J Physiol 267(4 Pt 1):C1119–C1129

    CAS  PubMed  Google Scholar 

  28. Sepulveda FV, Pearson JD (1982) Characterization of neutral amino acid uptake by cultured epithelial cells from pig kidney. J Cell Physiol 112(2):182–188

    Article  CAS  PubMed  Google Scholar 

  29. Palmada M, Speil A, Jeyaraj S, Bohmer C, Lang F (2005) The serine/threonine kinases SGK1, 3 and PKB stimulate the amino acid transporter ASCT2. Biochem Biophys Res Commun 331(1):272–277

    Article  CAS  PubMed  Google Scholar 

  30. Johnson TE, Umbenhauer DR, Hill R, Bradt C, Mueller SN, Levine EM, Nichols WW (1992) Karyotypic and phenotypic changes during in vitro aging of human endothelial cells. J Cell Physiol 150(1):17–27. doi:10.1002/jcp.1041500104

    Article  CAS  PubMed  Google Scholar 

  31. McCrann DJ, Yang D, Chen H, Carroll S, Ravid K (2009) Upregulation of NOX4 in the aging vasculature and its association with smooth muscle cell polyploidy. Cell Cycle 8(6):902–908. doi:7900[pii]

    Article  CAS  PubMed  Google Scholar 

  32. Ganem NJ, Pellman D (2007) Limiting the proliferation of polyploid cells. Cell 131(3):437–440. doi:S0092-8674(07)01342-6[pii]10.1016/j.cell.2007.10.024

    Article  CAS  PubMed  Google Scholar 

  33. Borradaile NM, Pickering JG (2010) Polyploidy impairs human aortic endothelial cell function and is prevented by nicotinamide phosphoribosyltransferase. Am J Physiol Cell Physiol 298(1):C66–C74. doi:ajpcell.00357.2009[pii]10.1152/ajpcell.00357.2009

    Article  CAS  PubMed  Google Scholar 

  34. Yang D, McCrann DJ, Nguyen H, St Hilaire C, DePinho RA, Jones MR, Ravid K (2007) Increased polyploidy in aortic vascular smooth muscle cells during aging is marked by cellular senescence. Aging Cell 6(2):257–260. doi:ACE274[pii]10.1111/j.1474-9726.2007.00274.x

    Article  CAS  PubMed  Google Scholar 

  35. D’Angiolella V, Santarpia C, Grieco D (2007) Oxidative stress overrides the spindle checkpoint. Cell Cycle 6(5):576–579. doi:3934[pii]

    Article  PubMed  Google Scholar 

  36. Gorla GR, Malhi H, Gupta S (2001) Polyploidy associated with oxidative injury attenuates proliferative potential of cells. J Cell Sci 114(Pt 16):2943–2951

    CAS  PubMed  Google Scholar 

  37. McCrann DJ, Nguyen HG, Jones MR, Ravid K (2008) Vascular smooth muscle cell polyploidy: an adaptive or maladaptive response? J Cell Physiol 215(3):588–592. doi:10.1002/jcp.21363

    Article  CAS  PubMed  Google Scholar 

  38. Broer S (2002) Adaptation of plasma membrane amino acid transport mechanisms to physiological demands. Pflugers Arch 444(4):457–466

    Article  CAS  PubMed  Google Scholar 

  39. Pinho MJ, Serrao MP, Soares-da-Silva P (2007) High-salt intake and the renal expression of amino acid transporters in spontaneously hypertensive rats. Am J Physiol Renal Physiol 292(5):F1452–F1463. doi:00465.2006[pii]10.1152/ajprenal.00465.2006

    Article  CAS  PubMed  Google Scholar 

  40. Broer A, Klingel K, Kowalczuk S, Rasko JE, Cavanaugh J, Broer S (2004) Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. J Biol Chem 279(23):24467–24476

    Article  CAS  PubMed  Google Scholar 

  41. Christensen HN (1990) Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 70(1):43–77

    CAS  PubMed  Google Scholar 

  42. Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 273(37):23629–23632

    Article  CAS  PubMed  Google Scholar 

  43. Silva E, Gomes P, Soares-da-Silva P (2006) Overexpression of Na+-K+-ATPase parallels the increase in sodium transport and potassium recycling in an in vitro model of proximal tubule cellular ageing. J Membr Biol 212(3):163–175

    Article  CAS  PubMed  Google Scholar 

  44. Sang J, Lim YP, Panzica M, Finch P, Thompson NL (1995) TA1, a highly conserved oncofetal complementary DNA from rat hepatoma, encodes an integral membrane protein associated with liver development, carcinogenesis, and cell activation. Cancer Res 55(5):1152–1159

    CAS  PubMed  Google Scholar 

  45. Storey BT, Fugere C, Lesieur-Brooks A, Vaslet C, Thompson NL (2005) Adenoviral modulation of the tumor-associated system l amino acid transporter, LAT1, alters amino acid transport, cell growth and 4F2/CD98 expression with cell-type specific effects in cultured hepatic cells. Int J Cancer 117(3):387–397

    Article  CAS  PubMed  Google Scholar 

  46. Wolf DA, Wang S, Panzica MA, Bassily NH, Thompson NL (1996) Expression of a highly conserved oncofetal gene, TA1/E16, in human colon carcinoma and other primary cancers: homology to schistosoma mansoni amino acid permease and Caenorhabditis elegans gene products. Cancer Res 56(21):5012–5022

    CAS  PubMed  Google Scholar 

  47. Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, Cha SH, Matsuo H, Fukushima J, Fukasawa Y, Tani Y, Taketani Y, Uchino H, Kim JY, Inatomi J, Okayasu I, Miyamoto K, Takeda E, Goya T, Endou H (2001) Human l-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta 1514(2):291–302

    Article  CAS  PubMed  Google Scholar 

  48. Fuchs BC, Bode BP (2005) Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol 15(4):254–266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Supported by Fundação para a Ciência e a Tecnologia, POCI, FEDER and Programa Comunitário de Apoio (PIC/IC/83204/2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrício Soares-da-Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinho, M.J., Cabral, J.M., Silva, E. et al. LAT1 overexpression and function compensates downregulation of ASCT2 in an in vitro model of renal proximal tubule cell ageing. Mol Cell Biochem 349, 107–116 (2011). https://doi.org/10.1007/s11010-010-0665-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0665-5

Keywords

Navigation