Skip to main content
Log in

Antioxidative and radioprotective activities of semiquinone glucoside derivative (SQGD) isolated from Bacillus sp. INM-1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A semiquinone glucoside derivative (SQGD) was isolated from a radioresistant bacterium Bacillus sp. INM-1 and its antioxidant and radioprotective activities were evaluated using in vitro assays. Natural stable free radical properties of SQGD in solid as well as in solution form were estimated using Electron Paramagnetic Resonance (EPR) spectrometry. Results of the study were demonstrated high reducing power (1.267 ± 0.03356 Uabs) and nitric oxide radicals scavenging activity (34.684 ± 2.132%) of SQGD. Maximum lipid peroxidation inhibitory activity of SQGD was found to be 74.09 ± 0.08% at 500 μg/ml concentration. Similarly, significant (39.54%; P < 0.05) protection to the liposomal artificial membrane against gamma radiation was observed by SQGD in terms of neutralization of gamma radiation-induced TBARS radicals in vitro. OH radicals scavenging efficacy of SQGD was estimated in terms of % inhibition in deoxy d-ribose degradation by non-site-specific and site-specific assay. The maximum (54.01 ± 1.01%) inhibition of deoxy d-ribose degradation was observed in non-site-specific manner, whereas, site-specific inhibition was observed to be 46.36 ± 0.5% at the same concentration (250 μg/ml) of SQGD. EPR spectroscopic analysis of the SQGD indicated ~80% reduction of DPPH radicals at 6.4% concentration. EPR spectral analysis of SQGD was revealed an appearance of very strong EPR signal of 2.00485 (crystalline form) and 2.00520 (solution form) gy tensor value, which were an established characteristic of o-semiquinone radicals. Therefore, it can be concluded that SQGD is a natural stable o-semiquinone-type radical, possessing strong antioxidant activities and can effectively neutralize radiation induced free radicals in biological system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wall ME, Wani MC (1996) Camptothecin and taxol: from discovery to clinic. J Ethnopharmacol 51:239–254

    Article  CAS  PubMed  Google Scholar 

  2. Weiss JF, Landauer MR (2003) Protection against ionizing radiation by antioxidant nutrient and phytochemicals. Toxicology 189:1–20

    Article  CAS  PubMed  Google Scholar 

  3. Arora R, Gupta D, Chawla R, Sagar R, Sharma AK, Prasad J, Singh S, Kumar R, Sharma RK (2005) Radioprotection by plants products: present status and future prospects. Phytother Res 19:1–22

    Article  CAS  PubMed  Google Scholar 

  4. Arora R, Chawla R, Sagar R, Prasad J, Singh S, Kumar R, Sharma A, Sharma RK (2005) Evaluation of radioprotective activities of Rhodiola imbricata Edgew—a high altitude plants. Mol Cell Biochem 273:209–223

    Article  CAS  PubMed  Google Scholar 

  5. Arora R, Chawla R, Puri SC, Sagar RK, Chawla R, Singh S, Kumar R, Sharma AK, Prasad J, Singh S, Kaur G, Chaudhary P, Qazi GN, Sharma RK (2005) Radioprotective and antioxidant properties of low altitude Podophyllum hexandrum (LAPH). J Environ Pathol Toxicol Oncol 24:299–314

    PubMed  Google Scholar 

  6. Karawita R, Siriwardhana N, Lee Ki-Wan, Heo Moon-Soo, Yeo In-Kyu, Lee Young-Don, Jeon You-Jin (2005) Reactive oxygen species scavenging, metal chelation, reducing power and lipid peroxidation inhibition properties of different solvent fractions from Hizikia fusiformis. Eur Food Res Technol 220:363–371

    Article  CAS  Google Scholar 

  7. Cao G, Prior RL (1999) Measurement of oxygen radical absorbance capacity in biological samples: methods in enzymology, vol 299. Academic Press, San Deigo, pp 50–62

    Google Scholar 

  8. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  9. Tian B, Xu Z, Sun Z, Lin J, Hua Y (2007) Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim Biophys Acta 1770:902–911

    CAS  PubMed  Google Scholar 

  10. Siriwardhana N, Lee KW, Jeon YJ, Kim SH, Haw JW (2003) Antioxidant activity of Hizikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhibition. Food Sci Technol Int 9:339–346

    Article  Google Scholar 

  11. Zhang HY, Li XJ, Gao N, Chen LL (2009) Antioxidants used by Deinococcus radiodurans and implications for antioxidant drug discovery. Nat Rev Microbiol 7:476–481

    Article  CAS  PubMed  Google Scholar 

  12. Dal MJ (2009) A new perspective on radiation resistance based on Deinococcus radiodurans. Nat Rev Microbiol 3:237–245

    Article  Google Scholar 

  13. Ferreir AC, Nobre MF, Moore E, Rainey FA, Battista JR, da-Costa MS (1999) Characterization and radiation resistance of new isolated of Rubrobacter radiotolerans and Rubrobacter xylanophilus. Extremophiles 3:235–238

    Article  Google Scholar 

  14. Kumar R, Patel DD, Bansal DD, Mishra S, Mohammed A, Arora R, Sharma A, Sharma RK, Tripathi RP (2010) Extremophiles: sustainable resource of natural compounds-extremolytes. In: Singh OV, Harvey SP (eds) Sustainable biotechnology sources of renewable energy. Springer, New York, pp 279–294

    Google Scholar 

  15. Oyaizu M (1986) Studies on products of browning reaction: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44:307–315

    CAS  Google Scholar 

  16. Garrat DC (1964) The quantitative analysis of drug. Chapman and Hall, Hirakawachi

    Google Scholar 

  17. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolourization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  PubMed  Google Scholar 

  18. New RRC (1990) Preparation of liposomes. In: New RRC (ed) Liposomes: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  19. Halliwell B, Gutteridge JM, Aruoma OI (1987) The deoxyribose method: a simple test tube assay for determination of the rate constants for reactions of hydroxyl radicals. Anal Biochem 165:215–219

    Article  CAS  PubMed  Google Scholar 

  20. Vankar PS, Tiwari V, Srivastava J (2006) Extracts of stem bark of Eucaliptus globulus as food dye with high antioxidant properties. Electron J Environ Agric Food Chem 5(6):1664–1669

    Google Scholar 

  21. Giambarresi L, Jacobs AJ (1987) Radioprotectant. In: Conklin JJ, Walker RI (eds) Militory radiobiology. Academic Press, London, pp 265–301

    Google Scholar 

  22. Sies H (1985) Oxidative stress. Academic press, New York

    Google Scholar 

  23. Pin-Der-Duh X (1998) Antioxidant activity of burdock (Arctium lappa Linne): it’s scavenging effect on free radical and active oxygen. J Am Oil Chem Soc 75:455–461

    Article  Google Scholar 

  24. Gordon MH (1990) The mechanism of the antioxidant action in vitro. In: Hudson BJF (ed) Food Antioxidants. Elsevier, London

    Google Scholar 

  25. Kumar PI, Goel HC (2000) Iron chelation and related properties of podophyllum hexandrum, a possible role in radioprotection. Indian J Exp Biol 38:1003–1006

    CAS  PubMed  Google Scholar 

  26. Miller MJ, Sadowska-Krowicka H, Chotinaruemol S, Kakkis JL, Clark DA (1993) Amelioration of chronic ileitis by nitric oxide synthase inhibition. J Pharmacol Exp Ther 264:11–16

    CAS  PubMed  Google Scholar 

  27. Guo X, Wang WP, Ko JK, Cho CH (1999) Involvement of neutrophils and free radicals in the potentiating effects of passive cigarette smoking on inflammatory bowel disease in rats. Gasteroenterol 117:884–890

    Article  CAS  Google Scholar 

  28. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  29. Yermilov V, Rubio J, Becchi M, Friesen MD, Pig-Natelli B, Ohshima H (1995) Formation of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro. Carcinogenesis 16:2045–2050

    Article  CAS  PubMed  Google Scholar 

  30. Matthew B, Grisham D, David AW (1999) Nitric oxide I. Physiological chemistry of nitric oxide and its metabolites: implications in inflammation. Am J Physiol Gastrointest Liver Physiol 276:G315–G321

    Google Scholar 

  31. Salvatore C (2004) Effect of inhibitors of nitric oxide in animal models and future directions for therapy in inflammatory disorders. Curr Med Chem Anti-Inflam Anti-Allergy Agents 3:261–270

    Article  Google Scholar 

  32. Devasagayam TPA, Boloor KK, Ramasarma T (2003) Methods for estimating lipid peroxidation: an analysis of merits and demerits. Indian J Biochem Biophys 40:300–308

    CAS  Google Scholar 

  33. Aruoma OI (1999) Free radicals, antioxidants and international nutrition. Asia Pacific J Clin Nutr 8:53–56

    Article  CAS  Google Scholar 

  34. Yen G, Duh P (1994) Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J Agric Food Chem 42:629–632

    Article  CAS  Google Scholar 

  35. Kitts DD, Wijewickreme AN, Hu C (2000) Antioxidant properties of a North American ginseng extract. Mol Cell Biochem 203:1–10

    Article  CAS  PubMed  Google Scholar 

  36. Zoete V, Bailly F, Vezin H, Teissier E, Duriez P, Fruchart JC, Catteau JP, Bernier JL (20004) 4-Mercaptoimidazoles derived from the naturally occurring antioxidant ovothiols 1. Antioxidant properties. Free Rad Res 32:515–524

    Article  CAS  Google Scholar 

  37. Matthäus B (2002) Antioxidant activity of extracts obtained from residues of different oilseeds. J Agric Food Chem 50:3444–3452

    Article  PubMed  Google Scholar 

  38. Rajaram D, Nazeer RA (2010) Antioxidant properties of protein hydrolysates obtained from marine fishes Lepturacanthus savala and Sphyraena barracuda. Int J Biotechnol Biochem 6:435–444

    Google Scholar 

  39. Polovka M, Brezova V, Stasko A (2003) Antioxidant properties of tea investigated by EPR spectroscopy. Biophys Chem 106:39–56

    Article  CAS  PubMed  Google Scholar 

  40. Khan N, Swartz H (2002) Measurements in vivo of parameters pertinent to ROS/RNS using EPR spectroscopy. Mol Cell Biochem 234(235):341–357

    Article  PubMed  Google Scholar 

  41. Gao Z, Huang K, Yang X, Xu H (1999) Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta 1472:643–650

    CAS  PubMed  Google Scholar 

  42. Bors W, Michel C, Stettmaier K, Lu Y, Foo LY (2004) Antioxidant mechanisms of polyphenolic caffeic acid oligomers, constituents of Salvia officinalis, antioxidant mechanisms of polyphenolic caffeic acid oligomers, constituents of Salvia officinalis. Biol Res 37:301–311

    Article  PubMed  Google Scholar 

  43. Sophia MY, Kuppala V, Narasimhulu RI, Samoilova RB, Gennis-Sergei AD (2010) Characterization of the semiquinone radical stabilized by the cytochrome aa3-600 menaquinol oxidase of Bacillus subtilis. J Biol Chem 285:18241–18251

    Article  Google Scholar 

  44. Akiyama N, Nakanishi I, Ohkubo K, Satoh K, Tsuchiya K, Nishikawa T, Fukuzumi S, Ikota N, Ozawa T, Tsujimoto M, Natori S (2007) A long–lived o-semiquinone radical anion is formed from N-β-alanyl-5-S-gluthationyl-3, 4-dihydroxyphenylalanine (5-S-GAD), an insect-derived antibacterial substance. J Biochem 142:41–48

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants of Defence Research and Development Organization, Ministry of Defence, India, Department of Science and Technology, India, and Ministry of Education, Youth and Science, Bulgaria. Indian Council of Medical Research is also duly acknowledged for providing research fellowship for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Bansal, D.D., Patel, D.D. et al. Antioxidative and radioprotective activities of semiquinone glucoside derivative (SQGD) isolated from Bacillus sp. INM-1. Mol Cell Biochem 349, 57–67 (2011). https://doi.org/10.1007/s11010-010-0660-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0660-x

Keywords

Navigation