Skip to main content

Advertisement

Log in

The chronic effects of neonatal alloxan-induced diabetes mellitus on ventricular myocyte shortening and cytosolic Ca2+

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a serious global health problem, and cardiovascular complications are the major cause of morbidity and mortality in diabetic patients. The chronic effects of neonatal alloxan- (ALX) induced diabetes mellitus on ventricular myocyte contraction and intracellular Ca2+ transport have been investigated. Ventricular myocyte shortening was measured with a video edge detection system and intracellular Ca2+ was measured in fura-2 loaded cells by fluorescence photometry. Diabetes was induced in 5-day old male Wistar rats by a single intraperitoneal injection of ALX (200 mg/kg body weight). Experiments were performed 12 months after ALX treatment. Fasting blood glucose was elevated and blood glucose at 60, 120 and 180 min after a glucose challenge (2 g/kg body weight, intraperitoneal) was elevated in diabetic rats compared to age-matched controls. Amplitude of shortening was significantly (P < 0.05) reduced in electrically stimulated myocytes from diabetic hearts (5.70 ± 0.24%) compared to controls (6.48 ± 0.28%). Amplitude of electrically evoked Ca2+ transients was also significantly (P < 0.05) reduced in myocytes from diabetic hearts (0.11 ± 0.01 fura-2 ratio units) compared to controls (0.15 ± 0.01 fura-2 ratio units). Fractional sarcoplasmic reticulum Ca2+ release was not significantly (P > 0.05) altered in myocytes from diabetic heart (0.70 ± 0.03 fura-2 ratio units) compared to controls (0.72 ± 0.03 fura-2 ratio units). Amplitude of caffeine-stimulated Ca2+ transients was significantly (P < 0.05) reduced in myocytes from diabetic hearts (0.43 ± 0.02 fura-2 ratio units) compared to controls (0.51 ± 0.03 fura-2 ratio units). Area under the caffeine-evoked Ca2+ transient was significantly (P < 0.05) reduced in myocytes from diabetic heart (0.77 ± 0.06 Vsec) compared to controls (1.14 ± 0.12 Vsec). Intracellular Ca2+ refilling rate during electrical stimulation following application of caffeine was significantly (P < 0.05) slower in myocytes from diabetic heart (0.013 ± 0.001 V/sec) compared to controls (0.031 ± 0.007 V/sec). Depressed shortening may be partly attributed to depressed sarcoplasmic reticulum Ca2+ transport in myocytes from neonatal ALX-induced diabetic rat heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Julien J (1997) Cardiac complications in non-insulin-dependent diabetes mellitus. J Diabetes Complications 11:123–130

    Article  CAS  PubMed  Google Scholar 

  2. Dhalla NS, Pierce GN, Innes IR, Beamish RE (1985) Pathogenesis of cardiac dysfunction in diabetes mellitus. Can J Cardiol 1(4):263–281

    CAS  PubMed  Google Scholar 

  3. Zimmet PZ, Alberti KG (2006) Introduction: Globalization and the non-communicable disease epidemic. Obesity (Silver Spring) 14(1):1–3

    Article  Google Scholar 

  4. Saadi H, Carruthers SG, Nagelkerke N, Al Maskari F, Afandi B, Reed R, Lukic M, Nicholls MG, Kazam E, Algawi K, Al-Kaabi J, Leduc C, Sabri S, El-sadig M, Elkhumaidi S, Agarwal M, Benedict S (2007) Prevalence of diabetes mellitus and its complications in a population-based sample in Al Ain, United Arab Emirates. Diabetes Res Clin Pract 78:369–377

    Article  PubMed  Google Scholar 

  5. Islam MS, Loots DT (2009) Experimental rodent models of type 2 diabetes: a review. Methods Find Exp Clin Pharmacol 31(4):249–261

    CAS  PubMed  Google Scholar 

  6. Rees DA, Alcolado JC (2005) Animal models of diabetes mellitus. Diabet Med 22(4):359–370

    Article  CAS  PubMed  Google Scholar 

  7. Chandler MP, Morgan EE, McElfresh TA, Kung TA, Rennison JH, Hoit BD, Young ME (2007) Heart failure progression is accelerated following myocardial infarction in type 2 diabetic rats. Am J Physiol 293(3):H1609–H1616

    CAS  Google Scholar 

  8. Shiels H, O’connell A, Qureshi MA, Howarth FC, White E, Calaghan S (2007) Stable microtubules contribute to cardiac dysfunction in the streptozotocin-induced model of type 1 diabetes in the rat. Mol Cell Biochem 294(1–2):173–180

    Article  CAS  PubMed  Google Scholar 

  9. Norby FL, Wold LE, Duan J, Hintz KK, Ren J (2002) IGF-I attenuates diabetes-induced cardiac contractile dysfunction in ventricular myocytes. Am J Physiol 283(4):E658–E666

    CAS  Google Scholar 

  10. Ren J, Davidoff AJ (1997) Diabetes rapidly induces contractile dysfunctions in isolated ventricular myocytes. Am J Physiol 272(1 Pt 2):H148–H158

    CAS  PubMed  Google Scholar 

  11. Bracken N, Howarth FC, Singh J (2006) Effects of streptozotocin-induced diabetes on contraction and calcium transport in rat ventricular cardiomyocytes. Ann NY Acad Sci 1084:208–222

    Article  CAS  PubMed  Google Scholar 

  12. Bracken NK, Woodall AJ, Howarth FC, Singh J (2004) Voltage-dependence of contraction in streptozotocin-induced diabetic myocytes. Mol Cell Biochem 261(1–2):235–243

    Article  CAS  PubMed  Google Scholar 

  13. Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW, Guatimosim S, Lederer WJ, Matlib MA (2002) Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am J Physiol 283(4):H1398–H1408

    CAS  Google Scholar 

  14. Noda N, Hayashi H, Satoh H, Terada H, Hirano M, Kobayashi A, Yamazaki N (1993) Ca2+ transients and cell shortening in diabetic rat ventricular myocytes. Jpn Circ J 57(5):449–457

    CAS  PubMed  Google Scholar 

  15. Lacombe VA, Viatchenko-Karpinski S, Terentyev D, Sridhar A, Emani S, Bonagura JD, Feldman DS, Györke S, Carnes CA (2007) Mechanisms of impaired calcium handling underlying subclinical diastolic dysfunction in diabetes. Am J Physiol 293(5):R1787–R1797

    CAS  Google Scholar 

  16. Lagadic-Gossmann D, Buckler KJ, Le Prigent K, Feuvray D (1996) Altered Ca2+ handling in ventricular myocytes isolated from diabetic rats. Am J Physiol 270(5 Pt 2):H1529–H1537

    CAS  PubMed  Google Scholar 

  17. Golfman L, Dixon IM, Takeda N, Chapman D, Dhalla NS (1999) Differential changes in cardiac myofibrillar and sarcoplasmic reticular gene expression in alloxan-induced diabetes. Mol Cell Biochem 200(1–2):15–25

    Article  CAS  PubMed  Google Scholar 

  18. Golfman L, Dixon IM, Takeda N, Lukas A, Dakshinamurti K, Dhalla NS (1998) Cardiac sarcolemmal Na(+)–Ca2+ exchange and Na(+)–K+ ATPase activities and gene expression in alloxan-induced diabetes in rats. Mol Cell Biochem 188(1–2):91–101

    Article  CAS  PubMed  Google Scholar 

  19. McNeill JH (1985) 1983 Upjohn Award lecture. Endocrine dysfunction and cardiac performance. Can J Physiol Pharmacol 63(1):1–8

    CAS  PubMed  Google Scholar 

  20. Howarth FC, Qureshi MA, White E (2002) Effects of hyperosmotic shrinking on ventricular myocyte shortening and intracellular Ca(2+) in streptozotocin-induced diabetic rats. Pflügers Arch 444(3):446–451

    Article  CAS  PubMed  Google Scholar 

  21. Levi AJ, Hancox JC, Howarth FC, Croker J, Vinnicombe J (1996) A method for making rapid changes of superfusate whilst maintaining temperature at 37°C. Pflügers Arch 432(5):930–937

    Article  CAS  PubMed  Google Scholar 

  22. Stolen TO, Hoydal MA, Kemi OJ, Catalucci D, Ceci M, Aasum E, Larsen T, Rolim N, Condorelli G, Smith GL, Wisløff U (2009) Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circ Res 105(6):527–536

    Article  CAS  PubMed  Google Scholar 

  23. Pereira L, Matthes J, Schuster I, Valdivia HH, Herzig S, Richard S, Gómez AM (2006) Mechanisms of [Ca2+]i transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 55(3):608–615

    Article  CAS  PubMed  Google Scholar 

  24. Kralik PM, Ye G, Metreveli NS, Shem X, Epstein PN (2005) Cardiomyocyte dysfunction in models of type 1 and type 2 diabetes. Cardiovasc Toxicol 5(3):285–292

    Article  PubMed  Google Scholar 

  25. Belke DD, Swanson EA, Dillmann WH (2004) Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes 53(12):3201–3208

    Article  CAS  PubMed  Google Scholar 

  26. Howarth FC, Qureshi MA (2008) Myofilament sensitivity to Ca2+ in ventricular myocytes from the Goto-Kakizaki diabetic rat. Mol Cell Biochem 315(1–2):69–74

    Article  CAS  PubMed  Google Scholar 

  27. Reuter H, Gronke S, Adam C, Ribati M, Brabender J, Zobel C, Frank KF, Wippermann J, Schwinger RH, Brixius K, Müller-Ehmsen J (2008) Sarcoplasmic Ca2+ release is prolonged in nonfailing myocardium of diabetic patients. Mol Cell Biochem 308(1–2):141–149

    Article  CAS  PubMed  Google Scholar 

  28. Pandit SV, Giles WR, Demir SS (2003) A mathematical model of the electrophysiological alterations in rat ventricular myocytes in type-I diabetes. Biophys J 84(2 Pt 1):832–841

    Article  CAS  PubMed  Google Scholar 

  29. Wang DW, Kiyosue T, Shigematsu S, Arita M (1995) Abnormalities of K+ and Ca2+ currents in ventricular myocytes from rats with chronic diabetes. Am J Physiol 269(4 Pt 2):H1288–H1296

    CAS  PubMed  Google Scholar 

  30. Wold LE, Dutta K, Mason MM, Ren J, Cala SE, Schwanke ML, Davidoff AJ (2005) Impaired SERCA function contributes to cardiomyocyte dysfunction in insulin resistant rats. J Mol Cell Cardiol 39(2):297–307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Grant from UAE University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Christopher Howarth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howarth, F.C., Hassan, Z. & Qureshi, M.A. The chronic effects of neonatal alloxan-induced diabetes mellitus on ventricular myocyte shortening and cytosolic Ca2+ . Mol Cell Biochem 347, 71–77 (2011). https://doi.org/10.1007/s11010-010-0613-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0613-4

Keywords

Navigation