Skip to main content
Log in

Myofilament sensitivity to Ca2+ in ventricular myocytes from the Goto–Kakizaki diabetic rat

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The chronic effects of type 2 diabetes mellitus on myofilament sensitivity to Ca2+ in ventricular myocytes from the Goto–Kakizaki (GK) rat have been investigated. Experiments were performed in ventricular myocytes isolated from 17-month GK rats and age-matched Wistar controls. Myocytes were loaded with fura-2 (an indicator for intracellular Ca2+ concentration) and the fura-2 ratio (340/380 nm), and shortening were measured simultaneously in electrically stimulated myocytes. Myofilament sensitivity to Ca2+ was assessed from phase-plane diagrams of fura-2 versus cell length by measuring the gradient of the fura-2–cell length trajectory during late relaxation of the twitch contraction. Non-fasting and fasting blood glucose were elevated in GK rats compared to controls. Fasting blood glucose was 151.5 ± 15.3 mg/dl (n = 8) in GK rats compared to 72.1 ± 3.6 mg/dl (n = 9) in controls. At 120 min after intraperitoneal injection of glucose (2 g/kg body weight), blood glucose was 570.8 ± 36.8 mg/dl in GK rats compared to 148 ± 8.6 mg/dl in controls. Amplitude of shortening was significantly increased in myocytes from GK rats (6.56 ± 0.54%, n = 31) compared to controls (5.05 ± 0.43%, n = 36), and the amplitude of the Ca2+ transient was decreased in myocytes from GK rats (0.23 ± 0.02 RU, n = 31) compared to controls (0.30 ± 0.02 RU, n = 36). The fura-2–cell length trajectory during the late stages of relaxation of the twitch contraction was steeper in myocytes from GK rats (89.2 ± 16.6 μm/RU, n = 27) compared to controls (31.9 ± 5.9 μm/RU, n = 35). Increased amplitude of shortening, accompanied by a decrease in amplitude of the Ca2+ transient, might be explained by an increased myofilament sensitivity to Ca2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goto Y, Kakizaki M, Masaki N (1975) Spontaneous diabetes produced by selective breeding of normal Wistar rats. Proc Jpn Acad 51:80–85

    Google Scholar 

  2. El Omar MM, Yang ZK, Phillips AO, Shah AM (2004) Cardiac dysfunction in the Goto-Kakizaki rat. A model of type II diabetes mellitus. Basic Res Cardiol 99:133–141. doi:10.1007/s00395-004-0440-4

    Article  PubMed  Google Scholar 

  3. Iltis I, Kober F, Desrois M, Dalmasso C, Lan C, Portha B et al (2005) Defective myocardial blood flow and altered function of the left ventricle in type 2 diabetic rats: a noninvasive in vivo study using perfusion and cine magnetic resonance imaging. Invest Radiol 40:19–26

    PubMed  Google Scholar 

  4. Howarth FC, Shafiullah M, Qureshi MA (2007) Chronic effects of type 2 diabetes mellitus on cardiac muscle contraction in the Goto-Kakizaki rat. Exp Physiol 92:1029–1036. doi:10.1113/expphysiol.2007.038703

    Article  PubMed  CAS  Google Scholar 

  5. Howarth FC, Qureshi MA (2001) Characterisation of ventricular myocyte shortening after administration of streptozotocin (STZ) to neonatal rats. Arch Physiol Biochem 109:200–205. doi:10.1076/apab.109.3.200.11598

    Article  PubMed  CAS  Google Scholar 

  6. Howarth FC, Qureshi MA, White E (2002) Effects of hyperosmotic shrinking on ventricular myocyte shortening and intracellular Ca(2+) in streptozotocin-induced diabetic rats. Pflügers Arch 444:446–451. doi:10.1007/s00424-002-0830-0

    Article  PubMed  CAS  Google Scholar 

  7. White E, Boyett MR, Orchard CH (1995) The effects of mechanical loading and changes of length on single guinea-pig ventricular myocytes. J Physiol 482:93–107

    PubMed  CAS  Google Scholar 

  8. Spurgeon HA, DuBell WH, Stern MD, Sollott SJ, Ziman BD, Silverman HS et al (1992) Cytosolic calcium and myofilaments in single rat cardiac myocytes achieve a dynamic equilibrium during twitch relaxation. J Physiol 447:83–102

    PubMed  CAS  Google Scholar 

  9. Portha B, Serradas P, Bailbe D, Suzuki K, Goto Y, Giroix MH (1991) Beta-cell insensitivity to glucose in the GK rat, a spontaneous nonobese model for type II diabetes. Diabetes 40:486–491. doi:10.2337/diabetes.40.4.486

    Article  PubMed  CAS  Google Scholar 

  10. Darmellah A, Baetz D, Prunier F, Tamareille S, Rucker-Martin C, Feuvray D (2007) Enhanced activity of the myocardial Na(+)/H (+) exchanger contributes to left ventricular hypertrophy in the Goto-Kakizaki rat model of type 2 diabetes: critical role of Akt. Diabetologia 50:1335–1344. doi:10.1007/s00125-007-0628-x

    Article  PubMed  CAS  Google Scholar 

  11. Desrois M, Sidell RJ, Gauguier D, Davey CL, Radda GK, Clarke K (2004) Gender differences in hypertrophy, insulin resistance and ischemic injury in the aging type 2 diabetic rat heart. J Mol Cell Cardiol 37:547–555. doi:10.1016/j.yjmcc.2004.05.014

    Article  PubMed  CAS  Google Scholar 

  12. Malhotra A, Sanghi V (1997) Regulation of contractile proteins in diabetic heart. Cardiovasc Res 34:34–40. doi:10.1016/S0008-6363(97)00059-X

    Article  PubMed  CAS  Google Scholar 

  13. Takeda N, Nakamura I, Hatanaka T, Ohkubo T, Nagano M (1988) Myocardial mechanical and myosin isoenzyme alterations in streptozotocin-diabetic rats. Jpn Heart J 29:455–463

    PubMed  CAS  Google Scholar 

  14. Takeda N, Hatanaka T, Nakamura I, Ohkubo T, Iwai T, Tanamura A et al (1989) Ventricular myosin isoenzyme pattern and myocardial contractility. Prog Clin Biol Res 315:597–599

    PubMed  CAS  Google Scholar 

  15. Howarth FC, Qureshi MA (2001) Myofilament Ca2+ sensitivity in ventricular myocytes from streptozotocin-induced diabetic rat. Int J Diabetes Metab 9:67–74

    Google Scholar 

  16. Woodall A, Bracken N, Qureshi A, Howarth FC, Singh J (2004) Halothane alters contractility and Ca2+ transport in ventricular myocytes from streptozotocin-induced diabetic rats. Mol Cell Biochem 261:251–261. doi:10.1023/B:MCBI.0000028763.15680.07

    Article  PubMed  CAS  Google Scholar 

  17. Khandoudi N, Guo AC, Chesnais M, Feuvray D (1993) Skinned cardiac fibres of diabetic rats: contractile activation and effects of 2,3-butanedione monoxime (BDM) and caffeine. Cardiovasc Res 27:447–452. doi:10.1093/cvr/27.3.447

    Article  PubMed  CAS  Google Scholar 

  18. Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW et al (2002) Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in type 1 diabetic rats. Am J Physiol 283:H1398–H1408

    CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by a grant from the Faculty of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Christopher Howarth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howarth, F.C., Qureshi, M.A. Myofilament sensitivity to Ca2+ in ventricular myocytes from the Goto–Kakizaki diabetic rat. Mol Cell Biochem 315, 69–74 (2008). https://doi.org/10.1007/s11010-008-9790-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9790-9

Keywords

Navigation