Skip to main content

Advertisement

Log in

Cloning, sequence identification, and tissue expression analysis of novel chicken NYGGF4 gene

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

NYGGF4 is a recently discovered gene that is involved in obesity-associated insulin resistance. In this study, an Hi-Line Brown chicken homolog of the NYGGF4 gene was cloned, sequenced, and characterized. The NYGGF4 full-length coding sequence (CDS) consists of 654 bp and encodes 217 amino acids with a molecular mass of 25,00 kD. The phosphotyrosine binding (PTB) domain of NYGGF4 is well conserved between chicken and other animals. The three-dimensional structure of the NYGGF4 (57–192 AA) by homology modeling was similar to that of human FE65-PTB1 domain. The phylogenetic tree analysis revealed that the chicken NYGGF4 has closer genetic relationships and evolution distance with the land mammals NYGGF4. Several predicted microRNA target sites were found in the coding sequence of chicken NYGGF4 mRNA. Analysis by RT-PCR showed that the NYGGF4 transcript is constitutively expressed in the 11 tissues tested: liver, subcutaneous fat, kidney, muscle stomach, heart, skin, brain, small intestine, spleen, lung, and skeletal muscle. These data serve as a foundation for further insight into the chicken NYGGF4 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AA:

Amino acid

CDS:

Coding sequence

FFAs:

Free fatty acids

PTB:

Phosphotyrosine binding

TNFa:

Tumor necrosis factor-a

IL-6:

Interleukin-6

LDL:

Low-density lipoprotein

LRP1:

Low-density lipoprotein receptor-related protein 1

ApoE:

Apolipoprotein E

AD:

Alzheimer’s disease

References

  1. Wang B, Zhang M, Ni YH, Liu F, Fan HQ, Fei L, Pan XQ, Guo M, Chen RH, Guo XR (2006) Identification and characterization of NYGGF4, a novel gene containing a phosphotyrosine-binding (PTB) domain that stimulates 3T3–L1 preadipocytes proliferation. Gene 379:132–140

    Article  CAS  PubMed  Google Scholar 

  2. Zhang CM, Chen XH, Wang B, Liu F, Chi X, Tong ML, Ni YH, Chen RH, Guo XR (2009) Over-expression of NYGGF4 inhibits glucose transport in 3T3–L1 adipocytes via attenuated phosphorylation of IRS-1 and Akt. Acta Pharmacol Sin 30:120–124

    Article  PubMed  Google Scholar 

  3. Kim JA, Wei Y, Sowers JR (2008) Role of mitochondrial dysfunction in insulin resistance. Circ Res 102:401–414

    Article  CAS  PubMed  Google Scholar 

  4. Maasen JA (2008) Mitochondria, body fat and type 2 diabetes: hat is the connection. Minerva Med 99:241–251

    CAS  PubMed  Google Scholar 

  5. Zhao Y, Zhang C, Chen X, Gao C, Ji C, Chen F, Zhu C, Zhu J, Wang J, Qian L, Guo X (2010) Overexpression of NYGGF4 (PID1) induces mitochondrial impairment in 3T3–L1 adipocytes. Mol Cell Biochem 340:41–48

    Article  CAS  PubMed  Google Scholar 

  6. Zhao YP, Zhang CM, Zhu C, Chen XH, Wang JL, Ji CB, Chi X, Hong Q, Peng YZ, Guo XR (2009) NYGGF4 homologous gene expression in 3T3–L1 adipocytes: regulation by FFA and adipokines. Mol Biol Rep 37(7):3291–3296

    Article  PubMed  Google Scholar 

  7. Goossens GH (2008) The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav 94:206–218

    Article  CAS  PubMed  Google Scholar 

  8. Boden G (1997) Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46:3–10

    Article  CAS  PubMed  Google Scholar 

  9. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91

    Article  CAS  PubMed  Google Scholar 

  10. Vozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C, Pratley RE (2001) Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res 9:414–417

    Article  CAS  PubMed  Google Scholar 

  11. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1:1155–1161

    Article  CAS  PubMed  Google Scholar 

  12. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312

    Article  CAS  PubMed  Google Scholar 

  13. Herz J, Strickland DK (2001) LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 108:779–784

    CAS  PubMed  Google Scholar 

  14. Caratù G, Allegra D, Bimonte M, Schiattarella GG, D’Ambrosio C, Scaloni A, Napolitano M, Russo T, Zambrano N (2007) Identification of the ligands of protein interaction domains through a functional approach. Mol Cell Proteomics 6:333–345

    PubMed  Google Scholar 

  15. Kajiwara Y, Franciosi S, Takahashi N, Krug L, Schmeidler J, Taddei K, Haroutunian V, Fried U, Ehrlich M, Martins RN, Gandy S, Buxbaum JD (2010) Extensive proteomic screening identifies the obesity-related NYGGF4 protein as a novel LRP1-interactor, showing reduced expression in early Alzheimer’s disease. Mol Neurodegener 5:1–11

    Article  PubMed  Google Scholar 

  16. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  17. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed  Google Scholar 

  18. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis 18:2714–2723

    Article  CAS  PubMed  Google Scholar 

  19. Bartel DP (2004) MicroRNAs: genomics, iogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  20. Zeng Y, Yi R, Bryan RC (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 100:9779–9784

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by foundation for Young Scholars of Harbin Normal University (KGB200806).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaolai Man.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Man, C., Li, X. & Zhao, D. Cloning, sequence identification, and tissue expression analysis of novel chicken NYGGF4 gene. Mol Cell Biochem 346, 117–124 (2011). https://doi.org/10.1007/s11010-010-0598-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0598-z

Keywords

Navigation