Skip to main content
Log in

Mechanism for the regulation of mammalian cGMP phosphodiesterase6. 2: Isolation and characterization of the transducin-activated form

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Rod photoreceptor cGMP phosphodiesterase (PDE6) consists of a catalytic subunit complex (Pαβ) and two inhibitory subunits (Pγ). In the accompanying article, using bovine photoreceptor outer segment homogenates, we show that Pγ as a complex with the GTP-bound transducin α subunit (GTP-Tα) dissociates from Pαβγγ on membranes, and the Pαβγγ becomes Pγ-depleted. Here, we identify and characterize the Pγ-depleted PDE. After incubation with or without guanosine 5′-O-(3-thiotriphosphate) (GTPγS), Pαβ complexes are extracted. When a hypotonic buffer is used, Pαβγγ, Pαβγ, and a negligible amount of a Pαβ complex containing Pγ are isolated with GTPγS, and only Pαβγγ is obtained without GTPγS. When an isotonic buffer containing Pδ, a prenyl-binding protein, is used, Pαβγγδ, Pαβγδδ, and a negligible amount of a Pαβ complex containing Pγ and Pδ are isolated with GTPγS, and Pαβγγδ is obtained without GTPγS. Neither Pαβ nor Pαβγγ complexed with GTPγS-Tα is found under any condition we examined. Pαβγ has ~12 times higher PDE activity and ~30 times higher Pγ sensitivity than those of Pαβγγ. These results indicate that the Pγ-depleted PDE is Pαβγ. Isolation of Pαβγγδ and Pαβγδδ suggests that one C-terminus of Pαβ is involved in the Pαβγγ interaction with membranes, and that Pγ dissociation opens another C-terminus for Pδ binding, which may lead to the expression of high PDE activity. Cone PDE behaves similarly to rod PDE in the anion exchange column chromatography. We conclude that the mechanisms for PDE activation are similar in mammalian and amphibian photoreceptors as well as in rods and cones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baehr W, Devlin MJ, Applebury ML (1979) Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments. J Biol Chem 254:11669–11677

    CAS  PubMed  Google Scholar 

  2. Hurley JB, Stryer L (1982) Purification and characterization of the gamma regulatory subunit of the cyclic GMP phosphodiesterase from retinal rod outer segments. J Biol Chem 257:11094–11099

    CAS  PubMed  Google Scholar 

  3. Deterre P, Bigay J, Forquet F, Robert M, Chabre M (1988) cGMP phosphodiesterase of retinal rods is regulated by two inhibitory subunits. Proc Natl Acad Sci USA 85:2424–2428

    Article  CAS  PubMed  Google Scholar 

  4. Fung BK, Young JH, Yamane HK, Griswold-Prenner I (1990) Subunit stoichiometry of retinal rod cGMP phosphodiesterase. Biochemistry 29:2657–2664

    Article  CAS  PubMed  Google Scholar 

  5. Ovchinnikov YA, Lipkin VM, Kumarev VP, Gubanov VV, Khramtsov NV, Akhmedov NB, Zagranichny VE, Muradov KG (1986) Cyclic GMP phosphodiesterase from cattle retina. Amino acid sequence of the gamma-subunit and nucleotide sequence of the corresponding cDNA. FEBS Lett 204:288–292

    Article  CAS  PubMed  Google Scholar 

  6. Lipkin VM, Khramtsov NV, Vasilevskaya IA, Atabekova NV, Muradov KG, Gubanov VV, Li T, Johnston JP, Volpp KJ, Applebury ML (1990) Beta-subunit of bovine rod photoreceptor cGMP phosphodiesterase: comparison with the phosphodiesterase family. J Biol Chem 265:12955–12959

    CAS  PubMed  Google Scholar 

  7. Gillespie PG, Beavo JA (1989) cGMP is tightly bound to bovine retinal rod phosphodiesterase. Proc Natl Acad Sci USA 86:4311–4315

    Article  CAS  PubMed  Google Scholar 

  8. Kajimura N, Yamazaki M, Morikawa K, Yamazaki A, Mayanagi K (2002) Three- dimensional structure of non-activated cGMP phosphodiesterase 6 and comparison of its image with those of activated forms. J Struct Biol 139:27–38

    Article  CAS  PubMed  Google Scholar 

  9. Charbonneau H, Prusti RK, LeTrong H, Sonnenburg WK, Mullaney PJ, Walsh KA, Beavo JA (1990) Identification of a noncatalytic cGMP-binding domain conserved in both the cGMP-stimulated and photoreceptor cyclic nucleotide phosphodiesterases. Proc Natl Acad Sci USA 87:288–292

    Article  CAS  PubMed  Google Scholar 

  10. Li TS, Volpp K, Applebury ML (1990) Bovine cone photoreceptor cGMP phosphodiesterase structure deduced from a cDNA clone. Proc Natl Acad Sci USA 87:293–297

    Article  CAS  PubMed  Google Scholar 

  11. Hamilton SE, Hurley JB (1990) A phosphodiesterase inhibitor specific to a subset of bovine retinal cones. J Biol Chem 265:11259–11264

    CAS  PubMed  Google Scholar 

  12. Anant JS, Ong OC, Xie HY, Clarke S, O’Brien PJ, Fung BK (1992) In vivo differential prenylation of retinal cyclic GMP phosphodiesterase catalytic subunits. J Biol Chem 267:687–690

    CAS  PubMed  Google Scholar 

  13. Qin N, Pittler SJ, Baehr W (1992) In vitro isoprenylation and membrane association of mouse rod photoreceptor cGMP phosphodiesterase alpha and beta subunits expressed in bacteria. J Biol Chem 267:8458–8463

    CAS  PubMed  Google Scholar 

  14. Gillespie PG, Beavo JA (1988) Characterization of a bovine cone photoreceptor phosphodiesterase purified by cyclic GMP-sepharose chromatography. J Biol Chem 263:8133–8141

    CAS  PubMed  Google Scholar 

  15. Florio SK, Prusti RK, Beavo JA (1996) Solubilization of membrane-bound rod phosphodiesterase by the rod phosphodiesterase recombinant delta subunit. J Biol Chem 271:24036–24047

    Article  CAS  PubMed  Google Scholar 

  16. Yamazaki A, Bondarenko VA, Matsuura I, Tatsumi M, Kurono S, Komori N, Matsumoto H, Hayashi F, Yamazaki RK, Usukura J (2010) Mechanism for the regulation of mammalian cGMP phosphodiesterase6. 1: Identification of its inhibitory subunit complexes and their roles. Mol Cell Biochem. doi:10.1007/s-11010-010-0387-8

    Google Scholar 

  17. Clerc A, Bennett N (1992) Activated cGMP phosphodiesterase of retinal rods. A complex with transducin alpha subunit. J Biol Chem 267:6620–6627

    CAS  PubMed  Google Scholar 

  18. Bennett N, Clerc A (1992) cGMP phosphodiesterase dependent light-induced scattering changes in suspensions of retinal disc membranes. Biochemistry 31:1858–1866

    Article  CAS  PubMed  Google Scholar 

  19. Catty P, Pfister C, Bruckert F, Deterre P (1992) The cGMP phosphodiesterase-transducin complex of retinal rods. Membrane binding and subunits interactions. J Biol Chem 267:19489–19493

    CAS  PubMed  Google Scholar 

  20. Erickson JW, Cerione RA (1993) Regulation of the cGMP phosphodiesterase in bovine rod outer segments. Use of resonance energy transfer to distinguish between associative and dissociative activation mechanisms. J Biol Chem 268:3328–3333

    CAS  PubMed  Google Scholar 

  21. Berger AL, Cerione RA, Erickson JW (1997) Real time conformational changes in the retinal phosphodiesterase gamma subunit monitored by resonance energy transfer. J Biol Chem 272:2714–2721

    Article  CAS  PubMed  Google Scholar 

  22. Sitaramayya A, Harkness J, Parks JH, Gonzalez-Oliva C, Liebman PA (1986) Kinetic studies suggest that light-activated cyclic GMP phosphodiesterase is a complex with G- protein subunits. Biochemistry 25:651–656

    Article  CAS  PubMed  Google Scholar 

  23. Yamazaki A, Stein PJ, Chernoff N, Bitensky MW (1983) Activation mechanism of rod outer segment cyclic GMP phosphodiesterase: release of inhibitor by the GTP/GTP-binding protein. J Biol Chem 258:8188–8194

    CAS  PubMed  Google Scholar 

  24. Yamazaki A, Hayashi F, Tatsumi M, Bitensky MW, George JS (1990) Interactions between the subunits of transducin and cyclic GMP phosphodiesterase in Rana catesbiana rod photoreceptors. J Biol Chem 265:11539–11548

    CAS  PubMed  Google Scholar 

  25. Wensel TG, Stryer L (1986) Reciprocal control of retinal rod cyclic GMP phosphodiesterase by its gamma subunit and transducin. Proteins 1:90–99

    Article  CAS  PubMed  Google Scholar 

  26. Deterre P, Bigay J, Robert M, Pfister C, Kühn H, Chabre M (1986) Activation of retinal rod cyclic GMP-phosphodiesterase by transducin: characterization of the complex formed by phosphodiesterase inhibitor and transducin alpha-subunit. Proteins 1:188–193

    Article  CAS  PubMed  Google Scholar 

  27. Yamazaki A, Yamazaki M, Tsuboi S, Kishigami A, Umbarger KO, Hutson LD, Madland WT, Hayashi F (1993) Regulation of G protein function by an effector in GTP-dependent signal transduction: an inhibitory subunit of cGMP phosphodiesterase inhibits GTP hydrolysis by transducin in vertebrate rod photoreceptors. J Biol Chem 268:8899–8907

    CAS  PubMed  Google Scholar 

  28. Otto-Bruc A, Antonny B, Vuong TM, Chardin P, Chabre M (1993) Interaction between the retinal cyclic GMP phosphodiesterase inhibitor and transducin: kinetics and affinity studies. Biochemistry 32:8636–8645

    Article  CAS  PubMed  Google Scholar 

  29. Berger AL, Cerione RA, Erickson JW (1999) Delineation of two functionally distinct gammaPDE binding sites on the bovine retinal cGMP phosphodiesterase by a mutant gammaPDE subunit. Biochemistry 38:1293–1299

    Article  CAS  PubMed  Google Scholar 

  30. Melia TJ, Malinski JA, He F, Wensel TG (2000) Enhancement of phototransduction protein interactions by lipid surfaces. J Biol Chem 275:3535–3542

    Article  CAS  PubMed  Google Scholar 

  31. Whalen MM, Bitensky MW (1989) Comparison of the phosphodiesterase inhibitory subunit interactions of frog and bovine rod outer segments. Biochem J 259:13–19

    CAS  PubMed  Google Scholar 

  32. Phillips WJ, Trukawinski S, Cerione RA (1989) An antibody-induced enhancement of the transducin-stimulated cyclic GMP phosphodiesterase activity. J Biol Chem 264:16679–16688

    CAS  PubMed  Google Scholar 

  33. Wensel TG, Stryer L (1990) Activation mechanism of retinal rod cyclic GMP phosphodiesterase probed by fluorescein-labeled inhibitory subunit. Biochemistry 29:2155–2161

    Article  CAS  PubMed  Google Scholar 

  34. Angleson JK, Wensel TG (1993) A GTPase-accelerating factor for transducin, distinct from its effector cGMP phosphodiesterase, in rod outer segment membranes. Neuron 11:939–949

    Article  CAS  PubMed  Google Scholar 

  35. He W, Lu L, Zhang X, El-Hodiri HM, Chen CK, Slep KC, Simon MI, Jamrich M, Wensel TG (2000) Modules in the photoreceptor RGS9-1.Gbeta 5L GTPase-accelerating protein complex control effector coupling, GTPase acceleration, protein folding, and stability. J Biol Chem 275:37093–37100

    Article  CAS  PubMed  Google Scholar 

  36. Yamazaki A, Bondarenko VA, Dus S, Yamazaki M, Usukura J, Hayashi F (1996) Possible stimulation of retinal rod recovery to the dark state by cGMP release from a cGMP phosphodiesterase noncatlytic site. J Biol Chem 271:32495–32498

    Article  CAS  PubMed  Google Scholar 

  37. Yamazaki M, Li N, Bondarenko VA, Yamazaki RK, Baehr W, Yamazaki A (2002) Binding of cGMP to GAF domains in amphibian rod photoreceptor cGMP phosphodiesterase (PDE). Identification of GAF domains in PDE alphabeta subunits and distinct domains in the PDE gamma subunit involved in stimulation of cGMP binding to GAF domains. J Biol Chem 277:40675–40686

    Article  CAS  PubMed  Google Scholar 

  38. Yamazaki A, Yamazaki M, Yamazaki RK, Usukura J (2006) Illuminated rhodopsin is required for strong activation of retinal guanylate cyclase by guanylate cyclase-activating proteins. Biochemistry 45:1899–1909

    Article  CAS  PubMed  Google Scholar 

  39. Li N, Baehr W (1998) Expression and characterization of human PDEdelta and its Caenorhabditis elegans ortholog CEdelta. FEBS Lett 440:454–457

    Article  CAS  PubMed  Google Scholar 

  40. Fairbanks G, Steck TL, Wallach DF (1971) Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10:2606–2617

    Article  CAS  PubMed  Google Scholar 

  41. Matsumoto H, Kurono S, Matsumoto M, Komori N (2005) Mass spectrometry of biomolecules in proteomics. In: Meyers RA (ed) Encyclopedia of molecular and cell biology and molecular medicine. Wiley-Verlag GmbH, Germany, pp 557–585

    Google Scholar 

  42. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  43. Brown RL (1992) Functional regions of the inhibitory subunit of retinal rod cGMP phosphodiesterase identified by site-specific mutagenesis and fluorescence spectroscopy. Biochemistry 31:5918–5925

    Article  CAS  PubMed  Google Scholar 

  44. Fung BK, Nash CR (1983) Characterization of transducin from bovine retinal rod outer segments. II. Evidence for distinct binding sites and conformational changes revealed by limited proteolysis with trypsin. J Biol Chem 258:10503–10510

    CAS  PubMed  Google Scholar 

  45. Malinski JA, Wensel TG (1992) Membrane stimulation of cGMP phosphodiesterase activation by transducin: comparison of phospholipid bilayers to rod outer segment membranes. Biochemistry 31:9502–9512

    Article  CAS  PubMed  Google Scholar 

  46. Tcheudji JFK, Lebeau L, Virmaux N, Maftei CG, Cote RH, Lugnier C, Schultz P (2001) Molecular organization of bovine rod cGMP-phosphodiesterase 6. J Mol Biol 310:781–791

    Article  CAS  Google Scholar 

  47. Srivastava D, Fox DA, Hurwitz RL (1995) Effects of magnesium on cyclic GMP hydrolysis by the bovine retinal rod cyclic GMP phosphodiesterase. Biochem J 308:653–658

    CAS  PubMed  Google Scholar 

  48. He F, Seryshev AB, Cowan CW, Wensel TG (2000) Multiple zinc binding sites in retinal rod cGMP phosphodiesterase, PDE6alpha beta. J Biol Chem 275:20572–20577

    Article  CAS  PubMed  Google Scholar 

  49. Seno K, Kishimoto M, Abe M, Higuchi Y, Mieda M, Owada Y, Yoshiyama W, Liu H, Hayashi F (2001) Light- and guanosine 5′-3-O-(thio)triphosphate-sensitive localization of a G protein and its effector on detergent-resistant membrane rafts in rod photoreceptor outer segments. J Biol Chem 276:20813–20816

    Article  CAS  PubMed  Google Scholar 

  50. Bondarenko VA, Desai M, Due S, Yamazaki M, Amin RH, Yousif KK, Kinumi T, Ohashi M, Komori N, Matsumoto H, Jackson KW, Hayashi F, Usukura J, Lipkin VM, Yamazaki A (1997) Residues within the polycationic region of cGMP phosphodiesterase γ subunit crucial for the interaction with transducin α subunit. J Biol Chem 272:15856–15864

    Article  CAS  PubMed  Google Scholar 

  51. Hayashi F, Matsuura I, Kachi S, Maeda T, Yamamoto M, Fujii Y, Liu H, Yamazaki M, Usukura J, Yamazaki A (2000) Phosphorylation by cyclin-dependent protein kinase 5 of the regulatory subunit of retinal cGMP phosphodiesterase: II. Its role in the turnoff of phosphodiesterase in vivo. J Biol Chem 275:32958–32965

    Article  CAS  PubMed  Google Scholar 

  52. Tsuboi S, Matsumoto H, Yamazaki A (1994) Phosphorylation of an inhibitory subunit of cGMP phosphodiesterase in Rana catesbiana rod photoreceptors: II. A possible mechanism for the turnoff of cGMP phosphodiesterase without GTP hydrolysis. J Biol Chem 269:15024–15029

    CAS  PubMed  Google Scholar 

  53. Matsuura I, Bondarenko VA, Maeda T, Kachi S, Yamazaki M, Usukura J, Hayashi F, Yamazaki A (2000) Phosphorylation by cyclin-dependent protein kinase 5 of the regulatory subunit of retinal cGMP phosphodiesterase: I. Identification of the kinase and its role in the turnoff of phosphodiesterase in vitro. J Biol Chem 275:32950–32957

    Article  CAS  PubMed  Google Scholar 

  54. Yamazaki A, Moskvin O, Yamazaki RK (2002) Phosphorylation by cyclin-dependent protein kinase 5 of the regulatory subunit (Pγ) of retinal cGMP phosphodiesterase (PDE6): its implications in phototransduction. Adv Exp Med Biol 514:131–153

    CAS  PubMed  Google Scholar 

  55. Janisch KM, Kasanuki JM, Naumann MC, Davis RJ, Semple-Rowland S, Tsang SH (2009) Light-dependent phosphorylation of the gamma subunit of cGMP-phosphodiesterase (PDE6gamma) at residue threonine 22 in intact photoreceptor neurons. Biochem Biophys Res Commun 390:1149–1153

    Article  CAS  PubMed  Google Scholar 

  56. Artemyev NO, Natochin M, Busman M, Schey KL, Hamm HE (1996) Mechanism of photoreceptor cGMP phosphodiesterase inhibition by its γ-subunits. Proc Natl Acad Sci USA 93:5407–5412

    Article  CAS  PubMed  Google Scholar 

  57. Guo LW, Grant JE, Hajipour AR, Muradov H, Arbabian M, Artemyev NO, Ruoho AE (2005) Asymmetric interaction between rod cyclic GMP phosphodiesterase γ subunits and αβ subunits. J Biol Chem 280:12525–12592

    Google Scholar 

  58. Yamazaki A, Bartucca F, Ting A, Bitensky MW (1982) Reciprocal effects of an inhibitory factor on catalytic activity and noncatalytic cGMP binding sites of rod phosphodiesterase. Proc Natl Acad Sci USA 79:3702–3706

    Article  CAS  PubMed  Google Scholar 

  59. Cote RH, Bownds MD, Arshavsky VY (1994) cGMP binding sites on photoreceptor phosphodiesterase: Role in feedback regulation of visual transduction. Proc Natl Acad Sci USA 91:4845–4849

    Article  CAS  PubMed  Google Scholar 

  60. Yamazaki A, Yamazaki M, Bondarenko VA, Matsumoto H (1996) Discrimination of two functions of photoreceptor cGMP phosphodiesterase gamma subunit. Biochem Biophys Res Commun 222:488–493

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Richard Needleman, Mr. Masaomi Matsumoto and Ms. Marta Matsumoto for critical reading of the manuscript. We also express our gratitude to Dr. Peter Stein for his suggestion to use the method [40] to wash Coomassie blue-stained gels. This work was supported in part by National Institute of Health Grants EY07546, EY09631, and EY13877, Jules and Doris Stein Professorship and an unrestricted grant from Research to Prevent Blindness, Grants-in Aids for Scientific Research from Japan Society for the promotion of Science 18310088 and 18370062, and Iketani Foundation for Science and Engineering 0191093-A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Yamazaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamazaki, A., Tatsumi, M., Bondarenko, V.A. et al. Mechanism for the regulation of mammalian cGMP phosphodiesterase6. 2: Isolation and characterization of the transducin-activated form. Mol Cell Biochem 339, 235–251 (2010). https://doi.org/10.1007/s11010-010-0404-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0404-y

Keywords

Navigation