Skip to main content
Log in

Irradiation with heavy-ion particles changes the cellular distribution of human histone acetyltransferase HAT1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hat1 was the first histone acetyltransferase identified; however, its biological function is still unclear. In this report, it is shown for the first time that human Hat1 has two isoforms. Isoform a has 418 amino acids (aa) and is localized exclusively in the nuclear matrix of normal human keratinocytes (NHKs). Isoform b has 334 aa and is located in the cytoplasm, the nucleoplasm, attached to the chromatin and to the nuclear matrix. Immunohistochemical analyses revealed that the bulk of Hat1 is confined to the nucleus, with much lesser amounts in the cytoplasm. Cells undergoing mitotic division have an elevated amount of Hat1 compared to those that are non-mitotic. Senescent cells, however, exhibit a higher concentration of Hat1 in the cytoplasm compare to proliferating cells and the amount of Hat1 in the nucleus decreases with the progression of senescence. NHKs exposed to hydrogen peroxide (H2O2) or to a beam of high mass and energy ion particles displayed bright nuclear staining for Hat1, a phenotype that was not observed in NHKs exposed to γ-rays. We established that the enhanced nuclear staining for Hat1 in response to these treatments is regulated by the PI3K and the mitogen-activated protein kinase signaling pathways. Our observations clearly implicate Hat1 in the cellular response assuring the survival of the treated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kleff S, Andrulis ED, Anderson CW, Sternglanz R (1995) Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem 270:24674–24677

    Article  CAS  PubMed  Google Scholar 

  2. Parthun MR, Widom J, Gottschling DE (1996) The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87:85–94

    Article  CAS  PubMed  Google Scholar 

  3. Parthun MR (2007) HAT1: the emerging cellular roles of a type B histone acetyltransferase. Oncogene 26:5319–5328

    Article  CAS  PubMed  Google Scholar 

  4. Verreault A, Kaufman PD, Kobayashe R, Stillman B (1998) Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr Biol 8:96–108

    Article  CAS  PubMed  Google Scholar 

  5. Lusser A, Eberharter A, Loidl A, Goralik-Schramel M, Horngacher M, Haas H, Loidl P (1999) Analysis of the histone acetyltransferase B complex of maize embryos. Nucleic Acids Res 27:4427–4435

    Article  CAS  PubMed  Google Scholar 

  6. Imhof A, Wolffe A (1999) Purification and properties of the Xenopus Hat1 acetyltransferase: association with the 14-3-3 proteins in the oocyte nucleus. Biochemistry 38:13085–13093

    Article  CAS  PubMed  Google Scholar 

  7. Barman HK, Takami Y, Nishijima H, Shibahara KI, Sanematsu F, Nakayama T (2008) Histone acetyltransferase-1 regulates integrity of cytosolic histone H3–H4 containing complex. Biochem Biophys Res Commun 373:624–630

    Article  CAS  PubMed  Google Scholar 

  8. Poveda A, Sendra R (2008) Site specificity of yeast histone acetyltransferase B complex in vivo. FEBS J 275:2122–2136

    Article  CAS  PubMed  Google Scholar 

  9. Poveda A, Pamblanco M, Tafrov S, Tordera V, Sternglanz R, Sendra R (2004) Hif1 is a component of yeast histone acetyltransferase B, a complex mainly localized in the nucleus. J Biol Chem 279:16033–16043

    Article  CAS  PubMed  Google Scholar 

  10. Ai X, Parthun MR (2004) The nuclear Hat1p/Hat2p complex: a molecular link between type B histone acetyltransferases and chromatin assembly. Mol Cell 14:195–205

    Article  CAS  PubMed  Google Scholar 

  11. Kelly TJ, Qin S, Gottschling DE, Parthun MR (2000) Type B histone acetyltransferase Hat1p participates in telomeric silencing. Mol Cell Biol 20:7051–7058

    Article  CAS  PubMed  Google Scholar 

  12. Rosaleny LE, Antúnez O, Ruiz-García AB, Pérez-Ortín JE, Tordera V (2005) Yeast HAT1 and HAT2 deletions have different life-span and transcriptome phenotypes. FEBS Lett 579:4063–4068

    Article  CAS  PubMed  Google Scholar 

  13. Suter B, Pogoutse O, Guo X, Krogan N, Lewis P, Greenblatt JF, Rine J, Emili A (2007) Association with the origin recognition complex suggests a novel role for histone acetyltransferase Hat1p/Hat2p. BMC Biol 5:38

    Article  PubMed  Google Scholar 

  14. Qin S, Parthun MR (2002) Histone H3 and the histone acetyltransferase Hat1p contributes to DNA double-strand break repair. Mol Cell Biol 22:8353–8365

    Article  CAS  PubMed  Google Scholar 

  15. Qin S, Parthun MR (2006) Recruitment of the type B histone acetyltransferase Hat1p to chromatin is linked to DNA double-strand breaks. Mol Cell Biol 26:3649–3658

    Article  CAS  PubMed  Google Scholar 

  16. Benson LJ, Phillips JA, Gu Y, Parthun MR, Hoffman CS, Annunziato AT (2007) Properties of the type B histone acetyltransferase Hat1: H4 tail interaction, site preference, and involvement in DNA repair. J Biol Chem 282:836–842

    Article  CAS  PubMed  Google Scholar 

  17. Barman HK, Takami Y, Ono T, Nishijima H, Sanematsu F, Shibahara K, Nakayama T (2006) Histone acetyltransferase 1 is dispensable for replication-coupled chromatin assembly but contributes to recover DNA damages created following replication blockage in vertebrate cells. Biochem Biophys Res Commun 345:1547–1557

    Article  CAS  PubMed  Google Scholar 

  18. Makowski AM, Dutnall RN, Annunziato AT (2001) Effects of acetylation of histone H4 at lysines 8 and 16 on activity of the Hat1 histone acetyltransferase. J Biol Chem 276:43499–43502

    Article  CAS  PubMed  Google Scholar 

  19. Matic M, Evans WH, Brink PR, Simon M (2002) Epidermal stem cells do not communicate through gap junctions. J Invest Dermatol 118:110–116

    Article  CAS  PubMed  Google Scholar 

  20. Di W, Li XY, Datta S, Aström A, Fisher GJ, Chambon P, Voorhees JJ, Xiao JH (1998) Keratinocyte-specific retinoid regulation of human cellular retinoic acid binding protein-II (hCRABPII) gene promoter requires an evolutionarily conserved DR1 retinoic acid-responsive element. J Invest Dermatol 111:1109–1115

    Article  CAS  PubMed  Google Scholar 

  21. Nickerson J (2001) Experimental observations of a nuclear matrix. J Cell Sci 114:463–474

    CAS  PubMed  Google Scholar 

  22. Kouskouti A, Talianidis I (2005) Histone modifications defining active genes persist after transcriptional and mitotic inactivation. EMBO J 24:347–357

    Article  CAS  PubMed  Google Scholar 

  23. Boldrup L, Bourdon JC, Coates PJ, Sjostrom B, Nylander K (2007) Expression of p53 isoforms in squamous cell carcinoma of the head and neck. Eur J Cancer 43:617–623

    Article  CAS  PubMed  Google Scholar 

  24. Guenatri M, Bailly D, Maison C, Almouzni G (2004) Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J Cell Biol 166:493–505

    Article  CAS  PubMed  Google Scholar 

  25. Tessadori F, Chuleau MC, Chuleau Y, Knip M, Germann S, Driel RV, Fransz P, Gaudin V (2007) Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. J Cell Sci 120:1200–1208

    Article  CAS  PubMed  Google Scholar 

  26. Walen KH (2004) Spontaneous cell transformation: karyoplasts derived from multinucleated cells produce new cell growth in senescent human epithelial cell cultures. In Vitro Cell Dev Biol Anim 40:150–158

    Article  PubMed  Google Scholar 

  27. Walen KH (2006) Human diploid fibroblast cells in senescence; cycling through polyploidy to mitotic cells. In Vitro Cell Dev Biol Anim 42:216–224

    Article  CAS  PubMed  Google Scholar 

  28. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  CAS  PubMed  Google Scholar 

  29. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanism, mutation, and disease. FASEB J 17:1195–1214

    Article  CAS  PubMed  Google Scholar 

  30. Whalen MK, Gurai SK, Zahed-Kargaran H, Pluth JM (2008) Specific ATM-mediated phosphorylation dependent on radiation quality. Radiat Res 170:353–364

    Article  CAS  PubMed  Google Scholar 

  31. Mukherjee B, Camacho CV, Tomimatsu N, Miller J, Burma S (2008) Modulation of the DNA-damage response to HZE particles by shielding. DNA Repair 7:1717–1730

    Article  CAS  PubMed  Google Scholar 

  32. Asaithamby A, Uematsu N, Chatterjee A, Story MD, Burma S, Chen DJ (2008) Repair of HZE-particle-induced DNA double-strand breaks in normal human fibroblasts. Radiat Res 169:437–446

    Article  CAS  PubMed  Google Scholar 

  33. Hada M, Georgakilas AG (2008) Formation of clustered DNA damage after high-LET irradiation: a review. J Radiat Res 49:203–210

    Article  CAS  PubMed  Google Scholar 

  34. Limoli CL, Giedzinski E, Baure J, Rola R, Fike JR (2007) Redox changes induced in hippocampal precursor cells by heavy ion irradiation. Radiat Environ Biophys 46:167–172

    Article  CAS  PubMed  Google Scholar 

  35. Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412

    Article  CAS  PubMed  Google Scholar 

  36. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  CAS  PubMed  Google Scholar 

  37. Lehman TA, Modali R, Boukamp P, Stanek J, Bennett WP, Welsh JA, Metcalf RA, Stampfer MR, Fusenig N, Rogan EM, Harris CC (1993) p53 mutations in human immortalized epithelial cell lines. Carcinogenesis 14:833–839

    Article  CAS  PubMed  Google Scholar 

  38. Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105

    Article  CAS  PubMed  Google Scholar 

  39. Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tomita F (1986) Staurosporine, a potent inhibitor of phospholipid/Ca++ dependent protein kinase. Biochem Biophys Res Commun 135:397–402

    Article  CAS  PubMed  Google Scholar 

  40. Mukherjee B, Kessinger C, Kobayashi J, Chen BP, Chen DJ, Chatterjee A, Burma S (2006) DNA-PK phosphorylates histone H2AX during apoptotic DNA fragmentation in mammalian cells. DNA repair 10:575–590

    Article  Google Scholar 

  41. Riches LC, Lynch AM, Gooderham NJ (2008) Early events in the mammalian response to DNA double-strand breaks. Mutagenesis 23:331–339

    Article  CAS  PubMed  Google Scholar 

  42. Crabbe T, Welham MJ, Ward SG (2007) The PI3 K inhibitor arsenal: choose your weapon. Trends in Biochem. Sci. 32:450–456

    Article  CAS  Google Scholar 

  43. Horton JK, Stefanick DF, Naron JM, Kedar PS, Wilson SH (2005) Poly(ADP-ribose) polymerase activity prevents signaling pathways for cell cycle arrest after DNA methylating agent exposure. J Biol Chem 280:15773–15785

    Article  CAS  PubMed  Google Scholar 

  44. Veuger JS, Curtin NJ, Richardson CJ, Smith GC, Durkacz BW (2003) Radiosensitization and DNA repair inhibition by the combined use of novel inhibitors of DNA-dependent protein kinase and poly(ADP-ribose) polymerase-1. Cancer Res 63:6008–6015

    CAS  PubMed  Google Scholar 

  45. Chanoux AR, Yin B, Urtishak KA, Asare A, Bassing CH, Brown EJ (2009) ATR and H2AX cooperate in maintaining genome stability under replication stress. J Biol Chem 284:5994–6003

    Article  CAS  PubMed  Google Scholar 

  46. Jinlian L, Yingbin Z, Chunbo W (2007) p38 MAPK in regulating cellular responses to ultraviolet radiation. J Biomed Sci 14:303–312

    Article  PubMed  Google Scholar 

  47. Dent P, Yacoub A, Contessa J, Caron R, Amorino G, Valerie K, Hagan MP, Grant S, Schmidt-Ullrich R (2003) Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat Res 159:283–300

    Article  CAS  PubMed  Google Scholar 

  48. Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S (2003) MAPK pathways in radiation responses. Oncogene 22:5885–5896

    Article  CAS  PubMed  Google Scholar 

  49. Hotokezaka H, Sakai E, Kanaoka K, Saito K, Matsuo K, Kitaura H, Yoshida N, Nakayama K (2002) U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW264.7 cells into osteoclast-like cells. J Biol Chem 277:47366–47372

    Article  CAS  PubMed  Google Scholar 

  50. Zhu M, Zhang Y, Bowden GT (2006) Involvement of mitogen-activated protein kinases and protein kinase C in regulation of antioxidant response element activity in human keratinocytes. Cancer Lett 244:220–228

    Article  CAS  PubMed  Google Scholar 

  51. Zink D, Fischer AH, Nickerson JA (2004) Nuclear structure in cancer cells. Nat Rev Cancer 4:677–687

    Article  CAS  PubMed  Google Scholar 

  52. Sutherland BM, Georgakilas AG, Bennett PV, Laval J, Sutherland JC (2003) Quantifying clustered DNA damage induction and repair by gel electrophoresis, electronic imaging and number average length analysis. Mutat Res 531:93–107

    CAS  PubMed  Google Scholar 

  53. Collins AR, Horváthová E (2001) Oxidative DNA damage, antioxidants and DNA repair: applications of the comet assay. Biochem Soc Trans 29:337–341

    Article  CAS  PubMed  Google Scholar 

  54. Azqueta A, Shaposhnikov S, Collins AR (2009) DNA oxidation: investigating its key role in environmental mutagenesis with the comet assay. Mutat Res 674:101–108

    CAS  PubMed  Google Scholar 

  55. Sutherland BM, Bennett PV, Sutherland JC, Laval J (2002) Clustered DNA damages induced by X rays in human cells. Radiat Res 157:611–616

    Article  CAS  PubMed  Google Scholar 

  56. Georgakilas AG, Bennett PV, Wilson DM III, Sutherland BM (2004) Processing of bistranded abasic DNA clusters in gamma-irradiated human hematopoietic cells. Nucleic Acids Res 32:5609–5620

    Article  CAS  PubMed  Google Scholar 

  57. Hada M, Sutherland BM (2006) Spectrum of complex DNA damages depends on the incident radiation. Radiat Res 165:223–230

    Article  CAS  PubMed  Google Scholar 

  58. Toulany M, Dittmann K, Fehrenbacher B, Schaller M, Baumann M, Rodemann HP (2008) PI3K-Akt signaling regulates basal, but MAP-kinase signaling regulates radiation-induced XRCC1 expression in human tumor cells in vitro. DNA Repair 7:1746–1756

    Article  CAS  PubMed  Google Scholar 

  59. Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312:1059–1063

    Article  CAS  PubMed  Google Scholar 

  60. Seiden-Long IM, Brown KR, Shih W, Wigle DA, Radulovich N, Jurisica I, Tsao MS (2006) Transcriptional targets of hepatocyte growth factor signaling and Ki-ras oncogene activation in colorectal cancer. Oncogene 25:91–102

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Avril Woodhead for her critical help with the manuscript preparation; Dr. Rolf Sternglanz and Dr. Carl Andersen for their critical reading of the manuscript; Dr. John Sutherland and John Trunk for the Western Blotting detection system; Drs. Adam Rusek, Michael Sivertz, Peter Guida and the entire BNL Medical Department support staff for the invaluable help with these experiments; Dr. Jean Underwood, and Dr. Jeffrey A. Nickerson for sharing protocols for matrix isolation and Dr. Betsy Sutherland for her support of the entire project. This study was supported by a grant from the National Aeronautics and Space Administration NNJ08HB63I under Department of Energy Prime Contract DE-AC02-98CH10886 with the Brookhaven National Laboratory (to S.T.T.) and from the Federal Ministry of Education and Research BMBF 02S8497 (to P.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan T. Tafrov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebel, E.A., Boukamp, P. & Tafrov, S.T. Irradiation with heavy-ion particles changes the cellular distribution of human histone acetyltransferase HAT1. Mol Cell Biochem 339, 271–284 (2010). https://doi.org/10.1007/s11010-010-0390-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0390-0

Keywords

Navigation