Skip to main content
Log in

Protein domains, catalytic activity, and subcellular distribution of mouse NTE-related esterase

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A mammalian family of lipid hydrolases, designated “patatin-like phospholipase domain containing (PNPLA)” recently has attracted attention. NTE-related esterase (NRE) as a member of PNPLA is an insulin-regulated lysophospholipase with homology to neuropathy target esterase (NTE). Mouse NRE (mNRE) has a predicted amino-terminal transmembrane region (TM), a putative regulatory (R) domain, and a hydrophobic catalytic (C) domain. In the current study, we described the expression of green fluorescent protein (GFP)-tagged constructs of mNRE and mutant proteins lacking the specific protein domains. Esterase assays indicated that neither the TM nor R-domain was essential for mNRE esterase activity, but the TM significantly contributed to its activity. Subcellular distribution showed that mNRE was anchored in ER via its TM domain and that its C-domain was associated with ER. Furthermore, experiments involving proteinase treatment revealed that most of mNRE molecule was exposed on the cytoplasmic face of ER membranes. Collectively, our results for the first time revealed the protein domains, catalytic activity, and subcellular location of mNRE and a simplified model for mNRE was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s modified Eagle’s medium

EDTA:

Ethylenediaminetetraacetic acid

ECL:

Enhanced chemiluminescence

GFP:

Green fluorescence protein

ER:

Endoplasmic reticulum

NEST:

NTE esterase activity domain

NP40:

Nonidet P-40

NTE:

Neuropathy target esterase

NRE:

NTE-related esterase

NREC:

The catalytic domain of NRE

NREN:

The N-terminal domain of NRE

OPIDN:

OP-induced delayed neuropathy

PBS:

Phosphate-buffered saline

PCR:

Polymerase chain reaction

PK:

Proteinase K

PNPLA:

Patatin-like phospholipase domain containing

PV:

Phenyl valerate

RT–PCR:

Reverse transcription–PCR

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TM:

Transmembrane

TX:

Triton X-100

References

  1. Kienesberger PC, Oberer M, Lass A et al (2009) Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions. J Lipid Res 50:S63–S68

    Article  PubMed  Google Scholar 

  2. Vancanneyt G, Sonnewald U, Hofgen R et al (1989) Expression of a patatin-like protein in the anthers of potato and sweet pepper flowers. Plant Cell 1:533–540

    Article  CAS  PubMed  Google Scholar 

  3. Smirnova E, Goldberg EB, Makarova KS et al (2006) ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells. EMBO Rep 7:106–113

    Article  CAS  PubMed  Google Scholar 

  4. Rydel TJ, Williams JM, Krieger E et al (2003) The crystal structure, mutagenesis, and activity studies reveal that patatin is a lipid acyl hydrolase with a Ser-Asp catalytic dyad. Biochemistry 42:6696–6708

    Article  CAS  PubMed  Google Scholar 

  5. Schneider G, Neuberger G, Wildpaner M et al (2006) Application of a sensitive collection heuristic for very large protein families: evolutionary relationship between adipose triglyceride lipase (ATGL) and classic mammalian lipases. BMC Bioinform 7:164

    Article  Google Scholar 

  6. Wilson PA, Gardner SD, Lambie NM et al (2006) Characterization of the human patatin-like phospholipase family. J Lipid Res 47:1940–1949

    Article  CAS  PubMed  Google Scholar 

  7. Lush MJ, Li Y, Read DJ et al (1998) Neuropathy target esterase and a homologous Drosophila neurodegeneration-associated mutant protein contain a novel domain conserved from bacteria to man. Biochem J 332:1–4

    CAS  PubMed  Google Scholar 

  8. Glynn P (2006) A mechanism for organophosphate-induced delayed neuropathy. Toxicol Lett 162:94–97

    Article  CAS  PubMed  Google Scholar 

  9. Quistad GB, Barlow C, Winrow CJ et al (2003) Evidence that mouse brain neuropathy target esterase is a lysophospholipase. Proc Natl Acad Sci USA 100:7983–7987

    Article  CAS  PubMed  Google Scholar 

  10. Zaccheo O, Dinsdale D, Meacock PA et al (2004) Neuropathy target esterase and its yeast homologue degrade phosphatidylcholine to glycerophosphocholine in living cells. J Biol Chem 279:24024–24033

    Article  CAS  PubMed  Google Scholar 

  11. Muhlig-Versen M, da Cruz AB, Tschape JA et al (2005) Loss of Swiss cheese/neuropathy target esterase activity causes disruption of phosphatidylcholine homeostasis and neuronal and glial death in adult Drosophila. J Neurosci 25:2865–2873

    Article  PubMed  Google Scholar 

  12. Winrow CJ, Hemming ML, Allen DM et al (2003) Loss of neuropathy target esterase in mice links organophosphate exposure to hyperactivity. Nat Genet 33:477–485

    Article  CAS  PubMed  Google Scholar 

  13. Moser M, Li Y, Vaupel K et al (2004) Placental failure and impaired vasculogenesis result in embryonic lethality for neuropathy target esterase-deficient mice. Mol Cell Biol 24:1667–1679

    Article  CAS  PubMed  Google Scholar 

  14. Akassoglou K, Malester B, Xu J (2004) Brain-specific deletion of neuropathy target esterase/swisscheese results in neurodegeneration. Proc Natl Acad Sci USA 101:5075–5080

    Article  CAS  PubMed  Google Scholar 

  15. Xie M, Yang D, Matoney L et al (2003) Rat NTE-related esterase is a membrane-associated protein, hydrolyzes phenyl valerate, and interacts with diisopropylfluorophosphate through a serine catalytic machinery. Arch Biochem Biophys 416:137–146

    Article  CAS  PubMed  Google Scholar 

  16. Chang PA, Long DX, Wu YJ (2007) Molecular cloning and expression of the C-terminal domain of mouse NTE-related esterase. Mol Cell Biochem 306:25–32

    Article  CAS  PubMed  Google Scholar 

  17. Kienesberger PC, Lass A, Preiss-Landl K et al (2008) Identification of an insulin-regulated lysophospholipase with homology to neuropathy target esterase. J Biol Chem 283:5908–5917

    Article  CAS  PubMed  Google Scholar 

  18. Chang PA, Long DX, Sun Q et al (2008) Identification and characterization of a splice variant of the catalytic domain of mouse NTE-related esterase. Gene 417:43–50

    Article  CAS  PubMed  Google Scholar 

  19. Johnson MK (1977) Improved assay of neurotoxic esterase for screening organophosphates for delayed neurotoxicity potential. Arch Toxicol 37:113–115

    Article  CAS  PubMed  Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  21. Chang PA, Wu YJ, Li W et al (2006) Effect of carbamate esters on neurite outgrowth in differentiating human SK-N-SH neuroblastoma cells. Chem Biol Interact 159:65–72

    Article  CAS  PubMed  Google Scholar 

  22. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  23. Ou WJ, Bergeron JJ, Li Y et al (1995) Conformational changes induced in the endoplasmic reticulum luminal domain of calnexin by Mg-ATP and Ca2+. J Biol Chem 270:18051–18059

    Article  CAS  PubMed  Google Scholar 

  24. Arnold K, Bordoli L, Kopp J et al (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  25. Wijeyesakere SJ, Richardson RJ, Stuckey JA (2007) Modeling the tertiary structure of the patatin domain of neuropathy target esterase. Protein J 26:165–172

    Article  CAS  PubMed  Google Scholar 

  26. Li Y, Dinsdale D, Glynn P (2003) Protein domains, catalytic activity, and subcellular distribution of neuropathy target esterase in mammalian cells. J Biol Chem 278:8820–8825

    Article  CAS  PubMed  Google Scholar 

  27. Takei K, Mignery GA, Mugnaini E et al (1994) Inositol 1,4,5-trisphosphate receptor causes formation of ER cisternal stacks in transfected fibroblasts and in cerebellar Purkinje cells. Neuron 12:327–342

    Article  CAS  PubMed  Google Scholar 

  28. Ishihara N, Yamashina S, Sakaguchi M et al (1995) Malfolded cytochrome P-450(M1) localized in unusual membrane structures of the endoplasmic reticulum in cultured animal cells. J Biochem 118:397–404

    CAS  PubMed  Google Scholar 

  29. Yamamoto A, Masaki R, Tashiro Y (1996) Formation of crystalloid endoplasmic reticulum in COS cells upon overexpression of microsomal aldehyde dehydrogenase by cDNA transfection. J Cell Sci 109:1727–1738

    CAS  PubMed  Google Scholar 

  30. Snapp EL, Hegde RS, Francolini M et al (2003) Formation of stacked ER cisternae by low affinity protein interactions. J Cell Biol 163:257–269

    Article  CAS  PubMed  Google Scholar 

  31. Ott CM, Lingappa VR (2002) Integral membrane protein biosynthesis: why topology is hard to predict. J Cell Sci 115:2003–2009

    CAS  PubMed  Google Scholar 

  32. Moser M, Stempfl T, Li Y et al (2000) Cloning and expression of the murine sws/NTE gene. Mech Dev 90:279–282

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 30870298, 30600329) and the Natural Science Foundation Project of CQ CSTC (2007BB5443), and by the Science and Technology Project from Chongqing Municipal Education Committee (KJ070510).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping-an Chang.

Additional information

Ping-an Chang and Zhan-xiang Wang equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, Pa., Wang, Zx., Long, Dx. et al. Protein domains, catalytic activity, and subcellular distribution of mouse NTE-related esterase. Mol Cell Biochem 339, 181–190 (2010). https://doi.org/10.1007/s11010-009-0382-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0382-0

Keywords

Navigation