Skip to main content
Log in

Ischemic post-conditioning reduces infarct size of the in vivo rat heart: role of PI3-K, mTOR, GSK-3β, and apoptosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Post-conditioning by repetitive cycles of reperfusion/ischemia after prolonged ischemia protects the heart from infarction. The objectives of this study were: Are kinases (PI3-kinase, mTOR, and GSK-3β) involved in the signaling pathway of post-conditioning? Does post-conditioning result in a diminished necrosis or apoptosis? In open chest rats the infarct size was determined after 30 min of regional ischemia and 30 min of reperfusion using propidium iodide and microspheres. Post-conditioning was performed by three cycles of 30 s reperfusion and reocclusion each, immediately upon reperfusion. PI3-kinase and mTOR were blocked using wortmannin (0.6 mg/kg) or rapamycin (0.25 mg/kg), respectively. The phosphorylation of GSK-3β and p70S6K was determined with phospho-specific antibodies. TUNEL staining and detection of apoptosis-inducing factor (AIF) were used for the determination of apoptosis. Control hearts had an infarct size of 49 ± 3%, while post-conditioning significantly reduced it to 29 ± 3% (P < 0.01). Wortmannin as well as rapamycin completely blocked the infarct size reduction of post-conditioning (51 ± 2% and 54 ± 5%, respectively). Western blot analysis revealed that post-conditioning increased the phosphorylation of GSK-3β by 2.3 times (P < 0.01), and this increase could be blocked by wortmannin, a PI3-kinase inhibitor. Although rapamycin blocked the infarct size reduction, phosphorylation of p70S6K was not increased in post-conditioned hearts. After 2 h of reperfusion, the post-conditioned hearts had significantly fewer TUNEL-positive nuclei (35 %) compared to control hearts (53%; P < 0.001). AIF was equally reduced in post-conditioned rat hearts (P < 0.05 vs. control). Infarct size reduction by ischemic post-conditioning of the in vivo rat heart is PI3-kinase dependent and involves mTOR. Furthermore, GSK-3β, which is thought to be a regulator of the mPTP, is part of the signaling pathway of post-conditioning. Finally, apoptosis was inhibited by post-conditioning, which was shown by two independent methods. The role of apoptosis and/or autophagy in post-conditioning has to be further elucidated to find therapeutic targets to protect the heart from the consequences of acute myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    CAS  PubMed  Google Scholar 

  2. Liu Y, Downey JM (1992) Ischemic preconditioning protects against infarction in rat heart. Am J Physiol 263:H1107–H1112

    CAS  PubMed  Google Scholar 

  3. Nakamura M, Wang N-P, Zhao Z-Q, Robinson J, Wilcox JN, Guyton RA, Vinten-Johansen J (1998) Ischemic preconditioning attenuates ischemia/reperfusion induced myocardial apoptosis. Circulation 98(Suppl):1–16

    Google Scholar 

  4. Driamov S, Bellahcene M, Ziegler A, Barbosa V, Traub D, Butz S, Buser PT, Zaugg CE (2004) Antiarrhythmic effect of ischemic preconditioning during low-flow ischemia. The role of bradykinin and sarcolemmal versus mitochondrial ATP-sensitive K(+) channels. Basic Res Cardiol 99:299–308

    Article  CAS  PubMed  Google Scholar 

  5. Schulz R, Gres P, Heusch G (2003) Activation of ATP-dependent potassium channels is a trigger but not a mediator of ischaemic preconditioning in pigs. Br J Pharmacol 139:65–72

    Article  CAS  PubMed  Google Scholar 

  6. Tong H, Rockman HA, Koch WJ, Steenbergen C, Murphy E (2004) G protein-coupled receptor internalization signaling is required for cardioprotection in ischemic preconditioning. Circ Res 94:1133–1141

    Article  CAS  PubMed  Google Scholar 

  7. Weinbrenner C, Schulze F, Sarvary L, Strasser RH (2004) Remote preconditioning by infrarenal aortic occlusion is operative via delta1-opioid receptors and free radicals in vivo in the rat heart. Cardiovasc Res 61:591–599

    Article  CAS  PubMed  Google Scholar 

  8. Na HS, Kim YI, Yoon YW, Han HC, Nahm SH, Hong SK (1996) Ventricular premature beat-driven intermittent restoration of coronary blood flow reduces the incidence of reperfusion-induced ventricular fibrillation in a cat model of regional ischemia. Am Heart J 132:78–83

    Article  CAS  PubMed  Google Scholar 

  9. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol 285:H579–H588

    CAS  Google Scholar 

  10. Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM (2004) Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 95:230–232

    Article  CAS  PubMed  Google Scholar 

  11. Yang XM, Philipp S, Downey JM, Cohen MV (2005) Postconditioning’s protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3-kinase and guanylyl cyclase activation. Basic Res Cardiol 100:57–63

    Article  CAS  PubMed  Google Scholar 

  12. Skyschally A, van CP, Iliodromitis EK, Schulz R, Kremastinos DT, Heusch G (2009) Ischemic postconditioning: experimental models and protocol algorithms. Basic Res Cardiol 104:469–483

    Article  PubMed  Google Scholar 

  13. Halkos ME, Kerendi F, Corvera JS, Wang NP, Kin H, Payne CS, Sun HY, Guyton RA, Vinten-Johansen J, Zhao ZQ (2004) Myocardial protection with postconditioning is not enhanced by ischemic preconditioning. Ann Thorac Surg 78:961–969

    Article  PubMed  Google Scholar 

  14. Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV (2004) Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol 44:1103–1110

    Article  PubMed  Google Scholar 

  15. Kin H, Zhao ZQ, Sun HY, Wang NP, Corvera JS, Halkos ME, Kerendi F, Guyton RA, Vinten-Johansen J (2004) Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res 62:74–85

    Article  CAS  PubMed  Google Scholar 

  16. Iliodromitis EK, Georgiadis M, Cohen MV, Downey JM, Bofilis E, Kremastinos DT (2006) Protection from post-conditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Res Cardiol 101:502–507

    Article  PubMed  Google Scholar 

  17. Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L’Huillier I, Aupetit JF, Bonnefoy E, Finet G, ndre-Fouet X, Ovize M (2005) Postconditioning the human heart. Circulation 112:2143–2148

    Article  PubMed  Google Scholar 

  18. Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E, Angoulvant D, Macia C, Raczka F, Sportouch C, Gahide G, Finet G, ndre-Fouet X, Revel D, Kirkorian G, Monassier JP, Derumeaux G, Ovize M (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359:473–481

    Article  CAS  PubMed  Google Scholar 

  19. Thibault H, Piot C, Staat P, Bontemps L, Sportouch C, Rioufol G, Cung TT, Bonnefoy E, Angoulvant D, Aupetit JF, Finet G, Andre-Fouet X, Macia JC, Raczka F, Rossi R, Itti R, Kirkorian G, Derumeaux G, Ovize M (2008) Long-term benefit of postconditioning. Circulation 117:1037–1044

    Article  CAS  PubMed  Google Scholar 

  20. Granfeldt A, Lefer DJ, Vinten-Johansen J (2009) Protective ischaemia in patients: preconditioning and postconditioning. Cardiovasc Res 83:234–246

    Article  CAS  PubMed  Google Scholar 

  21. Burke SE, Lubbers NL, Chen YW, Hsieh GC, Mollison KW, Luly JR, Wegner CD (1999) Neointimal formation after balloon-induced vascular injury in Yucatan minipigs is reduced by oral rapamycin. J Cardiovasc Pharmacol 33:829–835

    Article  CAS  PubMed  Google Scholar 

  22. Gross ER, Peart JN, Hsu AK, Auchampach JA, Gross GJ (2005) Extending the cardioprotective window using a novel delta-opioid agonist fentanyl isothiocyanate via the PI3-kinase pathway. Am J Physiol 288:H2744–H2749

    CAS  Google Scholar 

  23. Ito WD, Schaarschmidt S, Klask R, Hansen S, Schafer HJ, Mathey D, Bhakdi S (1997) Infarct size measurement by triphenyltetrazolium chloride staining versus in vivo injection of propidium iodide. J Mol Cell Cardiol 29:2169–2175

    Article  CAS  PubMed  Google Scholar 

  24. Wolff RA, Chien GL, van Winkle DM (2000) Propidium iodide compares favorably with histology and triphenyl tetrazolium chloride in the assessment of experimentally-induced infarct size. J Mol Cell Cardiol 32:225–232

    Article  CAS  PubMed  Google Scholar 

  25. Weinbrenner C, Nelles M, Herzog N, Sarvary L, Strasser RH (2002) Remote preconditioning by infrarenal occlusion of the aorta protects the heart from infarction: a newly identified non-neuronal but PKC-dependent pathway. Cardiovasc Res 55:590–601

    Article  CAS  PubMed  Google Scholar 

  26. Wagner C, Kloeting I, Strasser RH, Weinbrenner C (2008) Cardioprotection by postconditioning is lost in WOKW rats with metabolic syndrome: role of glycogen synthase kinase 3beta. J Cardiovasc Pharmacol 52:430–437

    Article  CAS  PubMed  Google Scholar 

  27. Ferrera R, Benhabbouche S, Bopassa JC, Li B, Ovize M (2009) One hour reperfusion is enough to assess function and infarct size with TTC staining in Langendorff rat model. Cardiovasc Drugs Ther 23:327–331

    Article  CAS  PubMed  Google Scholar 

  28. Darling CE, Jiang R, Maynard M, Whittaker P, Vinten-Johansen J, Przyklenk K (2005) Postconditioning via stuttering reperfusion limits myocardial infarct size in rabbit hearts: role of ERK1/2. Am J Physiol 289:H1618–H1626

    CAS  Google Scholar 

  29. Skyschally A, van CP, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18

    Article  CAS  PubMed  Google Scholar 

  30. Chiari PC, Bienengraeber MW, Pagel PS, Krolikowski JG, Kersten JR, Warltier DC (2005) Isoflurane protects against myocardial infarction during early reperfusion by activation of phosphatidylinositol-3-kinase signal transduction: evidence for anesthetic-induced postconditioning in rabbits. Anesthesiology 102:102–109

    Article  CAS  PubMed  Google Scholar 

  31. Philipp S, Yang XM, Cui L, Davis AM, Downey JM, Cohen MV (2006) Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade. Cardiovasc Res 70:308–314

    Article  CAS  PubMed  Google Scholar 

  32. Yin Z, Gao H, Wang H, Li L, Di C, Luan R, Tao L (2009) Ischaemic post-conditioning protects both adult and aged Sprague-Dawley rat heart from ischaemia-reperfusion injury through the phosphatidylinositol 3-kinase-AKT and glycogen synthase kinase-3beta pathways. Clin Exp Pharmacol Physiol 36:756–763

    Article  CAS  PubMed  Google Scholar 

  33. Krolikowski JG, Weihrauch D, Bienengraeber M, Kersten JR, Warltier DC, Pagel PS (2006) Role of Erk1/2, p70s6K, and eNOS in isoflurane-induced cardioprotection during early reperfusion in vivo. Can J Anaesth 53:174–182

    Article  PubMed  Google Scholar 

  34. Pagel PS, Krolikowski JG, Neff DA, Weihrauch D, Bienengraeber M, Kersten JR, Warltier DC (2006) Inhibition of glycogen synthase kinase enhances isoflurane-induced protection against myocardial infarction during early reperfusion in vivo. Anesth Analg 102:1348–1354

    Article  CAS  PubMed  Google Scholar 

  35. Gross ER, Hsu AK, Gross GJ (2004) Opioid-induced cardioprotection occurs via glycogen synthase kinase beta inhibition during reperfusion in intact rat hearts. Circ Res 94:960–966

    Article  CAS  PubMed  Google Scholar 

  36. Park SS, Zhao H, Jang Y, Mueller RA, Xu Z (2006) N6-(3-iodobenzyl)-adenosine-5′-N-methylcarboxamide confers cardioprotection at reperfusion by inhibiting mitochondrial permeability transition pore opening via glycogen synthase kinase 3 beta. J Pharmacol Exp Ther 318:124–131

    Article  CAS  PubMed  Google Scholar 

  37. Forster K, Paul I, Solenkova N, Staudt A, Cohen MV, Downey JM, Felix SB, Krieg T (2006) NECA at reperfusion limits infarction and inhibits formation of the mitochondrial permeability transition pore by activating p70S6 kinase. Basic Res Cardiol 101:319–326

    Article  PubMed  Google Scholar 

  38. Lajoie C, El-Helou V, Proulx C, Clement R, Gosselin H, Calderone A (2009) Infarct size is increased in female post-MI rats treated with rapamycin. Can J Physiol Pharmacol 87:460–470

    Article  CAS  PubMed  Google Scholar 

  39. Khan S, Salloum F, Das A, Xi L, Vetrovec GW, Kukreja RC (2006) Rapamycin confers preconditioning-like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes. J Mol Cell Cardiol 41:256–264

    Article  CAS  PubMed  Google Scholar 

  40. Kis A, Yellon DM, Baxter GF (2003) Second window of protection following myocardial preconditioning: an essential role for PI3 kinase and p70S6 kinase. J Mol Cell Cardiol 35:1063–1071

    Article  CAS  PubMed  Google Scholar 

  41. Raphael J, Zuo Z, Abedat S, Beeri R, Gozal Y (2008) Isoflurane preconditioning decreases myocardial infarction in rabbits via up-regulation of hypoxia inducible factor 1 that is mediated by mammalian target of rapamycin. Anesthesiology 108:415–425

    Article  CAS  PubMed  Google Scholar 

  42. Zhao HX, Wang XL, Wang YH, Wu Y, Li XY, Lv XP, Zhao ZQ, Zhao RR, Liu HR (2010) Attenuation of myocardial injury by postconditioning: role of hypoxia inducible factor-1alpha. Basic Res Cardiol 105:109–118

    Article  CAS  PubMed  Google Scholar 

  43. Dunlop EA, Tee AR (2009) Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cell Signal 21:827–835

    Article  CAS  PubMed  Google Scholar 

  44. Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113:1535–1549

    CAS  PubMed  Google Scholar 

  45. Murphy E (2004) Inhibit GSK-3beta or there’s heartbreak dead ahead. J Clin Invest 113:1526–1528

    CAS  PubMed  Google Scholar 

  46. Bopassa JC, Ferrera R, Gateau-Roesch O, Couture-Lepetit E, Ovize M (2006) PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning. Cardiovasc Res 69:178–185

    Article  CAS  PubMed  Google Scholar 

  47. Davidson SM, Hausenloy D, Duchen MR, Yellon DM (2006) Signalling via the reperfusion injury signalling kinase (RISK) pathway links closure of the mitochondrial permeability transition pore to cardioprotection. Int J Biochem Cell Biol 38:414–419

    Article  CAS  PubMed  Google Scholar 

  48. Hotchkiss RS, Strasser A, McDunn JE, Swanson PE (2009) Cell death. N Engl J Med 361:1570–1583

    Article  CAS  PubMed  Google Scholar 

  49. Kin H, Wang NP, Mykytenko J, Reeves J, Deneve J, Jiang R, Zatta AJ, Guyton RA, Vinten-Johansen J, Zhao ZQ (2008) Inhibition of myocardial apoptosis by postconditioning is associated with attenuation of oxidative stress-mediated nuclear factor-kappa B translocation and TNF alpha release. Shock 29:761–768

    CAS  PubMed  Google Scholar 

  50. Gomez L, Paillard M, Thibault H, Derumeaux G, Ovize M (2008) Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation 117:2761–2768

    Article  CAS  PubMed  Google Scholar 

  51. Nishino Y, Webb IG, Davidson SM, Ahmed AI, Clark JE, Jacquet S, Shah AM, Miura T, Yellon DM, Avkiran M, Marber MS (2008) Glycogen synthase kinase-3 inactivation is not required for ischemic preconditioning or postconditioning in the mouse. Circ Res 103:307–314

    Article  CAS  PubMed  Google Scholar 

  52. Zhao ZQ, Vinten-Johansen J (2002) Myocardial apoptosis and ischemic preconditioning. Cardiovasc Res 55:438–455

    Article  CAS  PubMed  Google Scholar 

  53. Van CS, Van Den BW (2002) Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol 31:214–223

    Article  Google Scholar 

  54. Aikawa R, Nawano M, Gu Y, Katagiri H, Asano T, Zhu W, Nagai R, Komuro I (2000) Insulin prevents cardiomyocytes from oxidative stress-induced apoptosis through activation of PI3 kinase/Akt. Circulation 102:2873–2879

    CAS  PubMed  Google Scholar 

  55. Kim GT, Chun YS, Park JW, Kim MS (2003) Role of apoptosis-inducing factor in myocardial cell death by ischemia-reperfusion. Biochem Biophys Res Commun 309:619–624

    Article  CAS  PubMed  Google Scholar 

  56. Joza N, Pospisilik JA, Hangen E, Hanada T, Modjtahedi N, Penninger JM, Kroemer G (2009) AIF: not just an apoptosis-inducing factor. Ann N Y Acad Sci 1171:2–11

    Article  CAS  PubMed  Google Scholar 

  57. Galluzzi L, Morselli E, Kepp O, Kroemer G (2009) Targeting post-mitochondrial effectors of apoptosis for neuroprotection. Biochim Biophys Acta 1787:402–413

    Article  CAS  PubMed  Google Scholar 

  58. Li Y, Ge X, Liu X (2009) The cardioprotective effect of postconditioning is mediated by ARC through inhibiting mitochondrial apoptotic pathway. Apoptosis 14:164–172

    Article  CAS  PubMed  Google Scholar 

  59. Sun HY, Wang NP, Halkos M, Kerendi F, Kin H, Guyton RA, Vinten-Johansen J, Zhao ZQ (2006) Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Apoptosis 11:1583–1593

    Article  CAS  PubMed  Google Scholar 

  60. Weihrauch D, Krolikowski JG, Bienengraeber M, Kersten JR, Warltier DC, Pagel PS (2005) Morphine enhances isoflurane-induced postconditioning against myocardial infarction: the role of phosphatidylinositol-3-kinase and opioid receptors in rabbits. Anesth Analg 101:942–949

    Article  CAS  PubMed  Google Scholar 

  61. Penna C, Perrelli MG, Raimondo S, Tullio F, Merlino A, Moro F, Geuna S, Mancardi D, Pagliaro P (2009) Postconditioning induces an anti-apoptotic effect and preserves mitochondrial integrity in isolated rat hearts. Biochim Biophys Acta 1787:794–801

    Article  CAS  PubMed  Google Scholar 

  62. Gustafsson AB, Gottlieb RA (2009) Autophagy in ischemic heart disease. Circ Res 104:150–158

    Article  CAS  PubMed  Google Scholar 

  63. Wu YT, Tan HL, Huang Q, Ong CN, Shen HM (2009) Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy 5:824–834

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Part of this study was presented at the meetings of the European Society of Cardiology, the International Society of Heart Research, and the German Society of Cardiology 2006. This study was supported by the Deutsche Forschungsgemeinschaft, Bonn (We 1955/2-2). Part of this work was sponsored by a grant from the Roland Ernst Stiftung für Gesundheitswesen. We thank Janet Lehmann for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Weinbrenner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, C., Tillack, D., Simonis, G. et al. Ischemic post-conditioning reduces infarct size of the in vivo rat heart: role of PI3-K, mTOR, GSK-3β, and apoptosis. Mol Cell Biochem 339, 135–147 (2010). https://doi.org/10.1007/s11010-009-0377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0377-x

Keywords

Navigation