Skip to main content
Log in

Use of pifithrin to inhibit p53-mediated signalling of TNF in dystrophic muscles of mdx mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Tumour Necrosis Factor (TNF) plays a major role in exacerbating necrosis of dystrophic muscle; however, the precise molecular mechanism underlying this effect of TNF is unknown. This study investigates the role that p53 plays in TNF-mediated necrosis of dystrophic myofibres by inhibiting p53 using pifithrin-α and three pifithrin-β analogues. Tissue culture studies using C2C12 myoblasts established that pifithrin-α was toxic to differentiating myoblasts at concentrations greater than 10 μM. While non-toxic concentrations of pifithrin-α did not prevent the TNF-mediated inhibition of myoblast differentiation, Western blots indicated that nuclear levels of p53 were higher in TNF-treated myoblasts indicating that TNF does elevate p53. In contrast, in vivo studies in adult mdx mice showed that pifithrin-α significantly reduced myofibre necrosis that resulted from voluntary wheel running over 48 h. These results support the hypothesis that p53 plays some role in TNF-mediated necrosis of dystrophic muscle and present a potential new target for therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Emery EH (2002) The muscular dystrophies. Lancet 359:687–695

    Article  CAS  PubMed  Google Scholar 

  2. Hoffman EP, Brown RH, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  CAS  PubMed  Google Scholar 

  3. Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL (1993) Dystrophin protects the sacolemma from stresses developed durign muscle contraction. Proc Natl Acad Sci USA 90(8):3710-3714

    Google Scholar 

  4. Ehmsen J, Poon E, Davies K (2002) The dystrophin-associated protein complex. J Cell Sci 115:2801–2803

    CAS  PubMed  Google Scholar 

  5. Bulfield G, Siller WG, Wright PAL, Moore KJ (1984) X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA 81:1189–1192

    Article  CAS  PubMed  Google Scholar 

  6. Lapidos KA, Kakkar R, McNally EM (2004) The dystrophin glycoprotein complex: signalling strength and integrity for the sarcolemma. Circ Res 94:1023–1031

    Article  CAS  PubMed  Google Scholar 

  7. Spencer MJ, Tidball JG (2001) Do immune cells promote the pathology of dystrophin-deficient myopathies? Neuromuscul Disord 11:556–564

    Article  CAS  PubMed  Google Scholar 

  8. Strober JB (2006) Therapeutics in duchenne muscular dystrophy. NeuroRx 3:225–234

    Article  CAS  PubMed  Google Scholar 

  9. Whitehead NP, Yeung EW, Allen DG (2006) Muscle damage in mdx (dystrophic) mice: role of calcium and reactive oxygen species. Clin Exp Pharmacol Physiol 33:657–662

    Article  CAS  PubMed  Google Scholar 

  10. Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, Leahy P, Li J, Guo W, Andrade FH (2002) A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum Mol Genet 11:263–272

    Article  CAS  PubMed  Google Scholar 

  11. Tidball JG (2005) Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 288:R345–R353

    CAS  PubMed  Google Scholar 

  12. Hodgetts S, Radley H, Davies M, Grounds MD (2006) Reduced necrosis of dystrophic muscle by depletion of host neutrophils, or blocking TNFalpha function with Etanercept in mdx mice. Neuromuscul Disord 16:591–602

    Article  PubMed  Google Scholar 

  13. Grounds MD, Torrisi J (2004) Anti-TNFa (Remicade) therapy protects dystrophic skeletal muscle from necrosis. FASEB J 18:676–682

    Article  CAS  PubMed  Google Scholar 

  14. Pierno S, Nico B, Burdi R, Liantonio A, Didonna MP, Cippone V, Fraysse B, Rolland JF, Mangieri D, Andreetta F, Ferro P, Camerino C, Zallone A, Confalonieri P, De Luca A (2007) Role of tumour necrosis factor alpha, but not of cyclo-oxygenase-2-derived eicosanoids, on functional and morphological indices of dystrophic progression in mdx mice: a pharmacological approach. Neuropathol Appl Neurobiol 33:344–359

    Article  CAS  PubMed  Google Scholar 

  15. Radley HG, Davies MJ, Grounds MD (2008) Reduced muscle necrosis and long-term benefits in dystrophic mdx mice after cV1q (blockade of TNF) treatment. Neuromuscul Disord 18:227–238

    Article  PubMed  Google Scholar 

  16. Radley HG, Grounds MD (2006) Cromolyn administration (to block mast cell degranulation) reduces necrosis of dystrophic muscle in mdx mice. Neurobiol Disord 23:387–397

    Article  CAS  Google Scholar 

  17. Cheung EV, Tidball JG (2003) Administration of the non-steroidal anti-inflammatory drug ibuprofen increases macrophage concentrations but reduces necrosis during modified muscle use. Inflamm Res 52:170–176

    Article  CAS  PubMed  Google Scholar 

  18. Wehling M, Spencer MJ, Tidball JG (2001) A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J Cell Biol 155:123–131

    Article  CAS  PubMed  Google Scholar 

  19. Messina S, Bitto A, Aguennouz M, Minutoli L, Monici MC, Altavilla D, Squadrito F, Vita G (2006) Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice. Exp Neurol 198:234–241

    Article  CAS  PubMed  Google Scholar 

  20. Kuru S, Inukai A, Kato T, Liang Y, Kimura S, Sobue G (2003) Expression of tumor necrosis factor-alpha in regenerating muscle fibers in inflammatory and non-inflammatory myopathies. Acta Neuropathol (Berl) 105:217–224

    CAS  Google Scholar 

  21. Grounds MD, Radley HG, Gebski BG, Bogoyevitch MA, Shavlakadze T (2008) Implications of cross-talk between tumour necrosis factor and insulin-like growth factor-1 signalling in skeletal muscle. Clin Exp Pharmacol Physiol 35(7):846–851

    Google Scholar 

  22. Saito K, Kobayashi D, Komatsu M, Yajima T, Yagihashi A, Ishikawa Y, Minami R, Watanabe N (2000) A sensitive assay of tumor necrosis factor alpha in sera from Duchenne muscular dystrophy patients. Clin Chem 46:1703–1704

    CAS  PubMed  Google Scholar 

  23. Radley HG, De Luca A, Lynch GS, Grounds MD (2007) Duchenne muscular dystrophy: Focus on pharmaceutical and nutritional interventions. Int J Biochem Cell Biol 39:469–477

    Article  CAS  PubMed  Google Scholar 

  24. Biggar WD, Harris VA, Eliasoph L, Alman B (2006) Long-term benefits of deflazacort treatment for boys with Duchenne muscular dystrophy in their second decade. Neuromuscul Disord 16:249–255

    Article  CAS  PubMed  Google Scholar 

  25. Bushby K, Muntoni F, Urtizberea A, Hughes R, Griggs R (2004) Report on the 124th ENMC international workshop. Treatment of duchenne muscular dystrophy; defining the gold standards of management in the use of corticosteroids. In: neuromuscular disorders. Naarden, The Netherlands, pp 526–534

  26. Arthur PG, Grounds MD, Shavlakadze T (2008) Oxidative stress as a therapeutic target during muscle wasting: considering the complex interactions. Curr Opin Clin Nutr Metab Care 11:408–416

    Article  CAS  PubMed  Google Scholar 

  27. Foulstone EJ, Meadows KA, Holly JM, Stewart CE (2001) Insulin-like growth factors (IGF-I and IGF-II) inhibit C2 skeletal myoblast differentiation and enhance TNF alpha-induced apoptosis. J Cell Physiol 189:207–215

    Article  CAS  PubMed  Google Scholar 

  28. Meadows KA, Holly JMP, Stewart CEH (2000) Tumor necrosis factor-a-induced apoptosis is associated with suppression of insulin-like growth factor binding protein-5 secretion in differentiating murine skeletal myoblasts. J Cell Physiol 183:330–337

    Article  CAS  PubMed  Google Scholar 

  29. Coletti D, Yang E, Marazzi G, Sassoon D (2002) TNFa inhibits skeletal myogenesis through a PW1-dependent pathway by recruitment of caspase pathways. EMBO J 21:631–642

    Article  CAS  PubMed  Google Scholar 

  30. Reid MB, Lannergren J, Westerblad H (2002) Respiratory and limb muscle weakness induced by tumor necrosis factor-alpha: involvement of muscle myofilaments. Am J Respir Crit Care Med 166:479–484

    Article  PubMed  Google Scholar 

  31. Dempsey PW, Doyle SE, He JQ, Cheng G (2003) The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 14:193–209

    Article  CAS  PubMed  Google Scholar 

  32. Tolosa L, Morla M, Iglesias A, Busquets X, Llado J, Olmos G (2005) IFN-gamma prevents TNF-alpha-induced apoptosis in C2C12 myotubes through down-regulation of TNF-R2 and increased NF-kappaB activity. Cell Signal 17:1333–1342

    Article  CAS  PubMed  Google Scholar 

  33. Clark IA (2007) How TNF was recognized as a key mechanism of disease. Cytokine Growth Factor Rev 18:335–343

    Article  CAS  PubMed  Google Scholar 

  34. Schwarzkopf M, Coletti D, Sassoon D, Marazzi G (2006) Muscle cachexia is regulated by a p53-PW1/Peg3-dependent pathway. Genes Dev 20:3440–3452

    Article  CAS  PubMed  Google Scholar 

  35. Marsolais D, Cote CH, Frenette J (2007) Pifithrin-alpha, an inhibitor of p53 transactivation, alters the inflammatory process and delays tendon healing following acute injury. Am J Physiol Regul Integr Comp Physiol 292:R321–R327

    CAS  PubMed  Google Scholar 

  36. Schafer T, Scheuer C, Roemer K, Menger MD, Vollmar B (2003) Inhibition of p53 protects liver tissue against endotoxin-induced apoptotic and necrotic cell death. Faseb J 17:660–667

    Article  CAS  PubMed  Google Scholar 

  37. Dogra C, Srivastava DS, Kumar A (2008) Protein-DNA array-based identification of transcription factor activities differentially regulated in skeletal muscle of normal and dystrophin-deficient mdx mice. Mol Cell Biochem 312:17–24

    Article  CAS  PubMed  Google Scholar 

  38. Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, Gudkov AV (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285:1733–1737

    Article  CAS  PubMed  Google Scholar 

  39. Burdelya LG, Komarova EA, Hill JE, Browder T, Tararova ND, Mavrakis L, Dicorleto PE, Folkman J, Gudkov AV (2006) Inhibition of p53 response in tumor stroma improves efficacy of anticancer treatment by increasing antiangiogenic effects of chemotherapy and radiotherapy in mice. Cancer Res 66:9356–9361

    Article  CAS  PubMed  Google Scholar 

  40. Gudkov AV, Komarova EA (2005) Prospective therapeutic applications of p53 inhibitors. Biochem Biophys Res Commun 331:726–736

    Article  CAS  PubMed  Google Scholar 

  41. Strom E, Sathe S, Komarov PG, Chernova OB, Pavlovska I, Shyshynova I, Bosykh DA, Burdelya LG, Macklis RM, Skaliter R, Komarova EA, Gudkov AV (2006) Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2:474–479

    Article  CAS  PubMed  Google Scholar 

  42. Komarova EA, Gudkov AV (2000) Suppression of p53: a new approach to overcome side effects of antitumor therapy. Biochemistry (Moscow) 65:41–48

    CAS  Google Scholar 

  43. Barchechath SD, Tawatao RI, Corr M, Carson DA, Cottam HB (2005) Inhibitors of apoptosis in lymphocytes: synthesis and biological evaluation of compounds related to pifithrin-alpha. J Med Chem 48:6409–6422

    Article  CAS  PubMed  Google Scholar 

  44. Pietrancosta N, Moumen A, Dono R, Lingor P, Planchamp V, Lamballe F, Bahr M, Kraus JL, Maina F (2006) Imino-tetrahydro-benzothiazole derivatives as p53 inhibitors: discovery of a highly potent in vivo inhibitor and its action mechanism. J Med Chem 49:3645–3652

    Article  CAS  PubMed  Google Scholar 

  45. Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727

    Article  CAS  PubMed  Google Scholar 

  46. Wang J, Ouyang W, Li J, Wei L, Ma Q, Zhang Z, Tong Q, He J, Huang C (2005) Loss of tumor suppressor p53 decreases PTEN expression and enhances signaling pathways leading to activation of activator protein 1 and nuclear factor kappaB induced by UV radiation. Cancer Res 65:6601–6611

    Article  CAS  PubMed  Google Scholar 

  47. Miller JB (1990) Myogenic programs of mouse muscle cell lines: expression of myosin heavy chain isoforms, MyoD1, and myogenin. J Cell Biol 111:1149–1159

    Article  CAS  PubMed  Google Scholar 

  48. Machida S, Booth FW (2004) Increased nuclear proteins in muscle satellite cells in aged animals as compared to young growing animals. Exp Gerontol 39:1521–1525

    Article  CAS  PubMed  Google Scholar 

  49. Schaller MD (2001) Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20:6459–6472

    Article  CAS  PubMed  Google Scholar 

  50. Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J, Hannon GJ, Beach D, Lassar AB (1995) Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267:1018–1021

    Article  CAS  PubMed  Google Scholar 

  51. Soddu S, Blandino G, Scardigli R, Coen S, Marchetti A, Rizzo MG, Bossi G, Cimino L, Crescenzi M, Sacchi A (1996) Interference with p53 protein inhibits hematopoietic and muscle differentiation. J Cell Biol 134:193–204

    Article  CAS  PubMed  Google Scholar 

  52. Dupont-Versteegden EE, McCarter RJ, Katz MS (1994) Voluntary exercise decreases progression of muscular dystrophy in diaphragm of mdx mice. J Appl Physiol 77:1736–1741

    CAS  PubMed  Google Scholar 

  53. Gary RK, Jensen DA (2005) The p53 inhibitor pifithrin-alpha forms a sparingly soluble derivative via intramolecular cyclization under physiological conditions. Mol Pharm 2:462–474

    Article  CAS  PubMed  Google Scholar 

  54. Pietrancosta N, Maina F, Dono R, Moumen A, Garino C, Laras Y, Burlet S, Quelever G, Kraus J-L (2005) Novel cyclized Pifithrin -(alpha) p53 inactivators: synthesis and biological studies. Bioorg Med Chem Lett 15:1561–1564

    Article  CAS  PubMed  Google Scholar 

  55. Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268:2764–2772

    Article  CAS  PubMed  Google Scholar 

  56. Soberanes S, Panduri V, Mutlu GM, Ghio A, Bundinger GR, Kamp DW (2006) p53 mediates particulate matter-induced alveolar epithelial cell mitochondria-regulated apoptosis. Am J Respir Crit Care Med 174:1229–1238

    Article  CAS  PubMed  Google Scholar 

  57. Proietti De Santis L, Balajee AS, Lorenti Garcia C, Pepe G, Worboys AM, Palitti F (2003) Inhibition of p53, p21 and Bax by pifithrin-alpha does not affect UV induced apoptotic response in CS-B cells. DNA Repair (Amst) 2:891–900

    Article  CAS  Google Scholar 

  58. Wineinger MA, Walsh SA, Abresch RT (1998) The effect of age and temperature on mdx muscle fatigue. Muscle Nerve 21:1075–1077

    Article  CAS  PubMed  Google Scholar 

  59. Archer JD, Vargas CC, Anderson JE (2006) Persistent and improved functional gain in mdx dystrophic mice after treatment with L-arginine and deflazacort. Faseb J 20:738–740

    CAS  PubMed  Google Scholar 

  60. Grounds MD, Radley HG, Lynch GS, Nagaraju K, De Luca A (2008) Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne muscular dystrophy. Neurobiol Dis 31:1–19

    Article  CAS  PubMed  Google Scholar 

  61. De Luca A, Nico B, Liantonio A, Didonna MP, Fraysse B, Pierno S, Burdi R, Mangieri D, Rolland JF, Camerino C, Zallone A, Confalonieri P, Andreetta F, Arnoldi E, Courdier-Fruh I, Magyar JP, Frigeri A, Pisoni M, Svelto M, Conte Camerino D (2005) A multidisciplinary evaluation of the effectiveness of cyclosporine a in dystrophic mdx mice. Am J Pathol 166:477–489

    PubMed  Google Scholar 

  62. Carter GT, Wineinger MA, Walsh SA, Horasek SJ, Abresch RT, Fowler WM Jr (1995) Effect of voluntary wheel-running exercise on muscles of the mdx mouse. Neuromuscul Disord 5:323–332

    Article  CAS  PubMed  Google Scholar 

  63. Drane P, Leblanc V, Miro-Mur F, Saffroy R, Debuire B, May E (2002) Accumulation of an inactive form of p53 protein in cells treated with TNF alpha. Cell Death Differ 9:527–537

    Article  CAS  PubMed  Google Scholar 

  64. Tergaonkar V, Perkins ND (2007) p53 and NF-kappaB crosstalk: IKKalpha tips the balence. Mol Cell 26:158–159

    Article  CAS  PubMed  Google Scholar 

  65. Kawauchi K, Araki K, Tobiume K, Tanaka N (2008) Activated p53 induces NF-κB DNA binding but suppresses its transcriptional activation. Biochem Biophys Res Commun 372:137–141

    Article  CAS  PubMed  Google Scholar 

  66. Perkins ND (2007) Integrating cell-signalling pathways with NF-kB and IKK function. Nat Rev Mol Cell Biol 8:49–62

    Article  CAS  PubMed  Google Scholar 

  67. Peterson JM, Guttridge DC (2008) Skeletal muscle diseases, inflammation, and NF-kappaB signaling: insights and opportunities for therapeutic intervention. Int Rev Immunol 27:375–387

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by a grant (MG/TS) from the National Health and Medical Research Council of Australia. We thank David Sassoon and Giovanna Marazzi (Paris) for suggesting the use of pifithrin-α for this study and Bijanka Gebski (UWA) for assistance in tissue culture studies. In addition, helpful discussions with Dr Trevor Payne (UWA) on selecting suitable pifithrin analogues were greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miranda D. Grounds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waters, F.J., Shavlakadze, T., McIldowie, M.J. et al. Use of pifithrin to inhibit p53-mediated signalling of TNF in dystrophic muscles of mdx mice. Mol Cell Biochem 337, 119–131 (2010). https://doi.org/10.1007/s11010-009-0291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0291-2

Keywords

Navigation