Skip to main content
Log in

Protein–DNA array-based identification of transcription factor activities differentially regulated in skeletal muscle of normal and dystrophin-deficient mdx mice

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Inactivation of dystrophin gene is the primary cause of Duchenne muscular dystrophy (DMD) in humans and mdx mice. However, the underpinning mechanisms, which govern the pathogenesis of dystrophin-deficient skeletal muscle, remain poorly understood. We have previously reported activation of mitogen-activated protein kinases (MAPK), nuclear factor-kappa B (NF-κB), and phosphatidyl-inositol 3-kinase/Akt (PI3K/Akt) signaling pathways in diaphragm muscle of mdx mice. In this study, using a protein–DNA array-based approach, we have investigated the activation of 345 transcription factors in diaphragm muscle of 6-week old normal and dystrophin-deficient mdx mice. Our data demonstrate increased activation of a number nuclear transcription factors including AP1, HFH-3, PPARα, c.myb BP, ETF, Fra-1/JUN, kBF-A, N-rasBP, lactoferrin BP, Myb(2), EBP40_45, EKLF(1), p53(2), TFEB, Myc-Max; c-Rel; E2, ISRE; NF-kB; Stat1 p84/p91, Antioxidant RE, EVI-1, Stat3, AP3, p53, Stat4, AP4, HFH-1, FAST-1, Pax-5, and Beta-RE in the diaphragm muscle of mdx mice compared to corresponding normal mice. The level of activation for p53 was highest among all the transcription factors studied. Furthermore, higher activation of p53 in diaphragm muscle of mdx mice was associated with its increased phosphorylation and nuclear translocation. Collectively, our data suggest that the primary deficiency of dystrophin leads to the aberrant activation of nuclear transcription factors which might further contribute to muscle pathogenesis in mdx mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AP-1:

Activator protein-1

DMD:

Duchenne muscular dystrophy

EMSA:

Electrophoretic mobility shift assay

NF-κB:

Nuclear factor-kappa B

PI3K:

Phosphatidyl-inositol 3-kinase

STAT:

Signal transduction and activator of transcription

References

  1. Ervasti JM, Ohlendieck K, Kahl SD et al (1990) Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345:315–319

    Article  PubMed  CAS  Google Scholar 

  2. Chelly J, Kaplan JC, Maire P et al (1998) Transcription of the dystrophin gene in human muscle and non-muscle tissue. Nature 333:858–860

    Article  Google Scholar 

  3. Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  PubMed  CAS  Google Scholar 

  4. Straub V, Campbell KP (1997) Muscular dystrophies and the dystrophin–glycoprotein complex. Curr Opin Neurol 10:168–175

    Article  PubMed  CAS  Google Scholar 

  5. Straub V, Rafael JA, Chamberlain JS et al (1997) Animal models for muscular dystrophy show different patterns of sarcolemmal disruption. J Cell Biol 139:375–385

    Article  PubMed  CAS  Google Scholar 

  6. Spencer MJ, Montecino-Rodriguez E, Dorshkind K et al (2001) Helper (CD4(+)) and cytotoxic (CD8(+)) T cells promote the pathology of dystrophin-deficient muscle. Clin Immunol 98:235–243

    Article  PubMed  CAS  Google Scholar 

  7. Chen YW, Zhao P, Borup R et al (2000) Expression profiling in the muscular dystrophies: identification of novel aspects of molecular pathophysiology. J Cell Biol 151:1321–1336

    Article  PubMed  CAS  Google Scholar 

  8. Tidball JG, Wehling-Henricks M (2004) Evolving therapeutic strategies for Duchenne muscular dystrophy: targeting downstream events. Pediatr Res 56:831–841

    Article  PubMed  Google Scholar 

  9. Khurana TS, Davies KE (2003) Pharmacological strategies for muscular dystrophy. Nat Rev Drug Discov 2:379–390

    Article  PubMed  CAS  Google Scholar 

  10. Haslett JN, Sanoudou D, Kho AT et al (2002) Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle. Proc Natl Acad Sci USA 99:15000–15005

    Article  PubMed  CAS  Google Scholar 

  11. Porter JD, Khanna S, Kaminski HJ (2002) A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum Mol Genet 11:263–272

    Article  PubMed  CAS  Google Scholar 

  12. Porter JD, Merriam AP, Leahy P et al (2003) Dissection of temporal gene expression signatures of affected and spared muscle groups in dystrophin-deficient (mdx) mice. Hum Mol Genet 12:1813–1821

    Article  PubMed  CAS  Google Scholar 

  13. Kumar A, Boriek AM (2003) Mechanical stress activates the nuclear factor-kappaB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy. FASEB J 17:386–396

    Article  PubMed  CAS  Google Scholar 

  14. Kumar A, Khandelwal N, Malya R et al (2004) Loss of dystrophin causes aberrant mechanotransduction in skeletal muscle fibers. FASEB J 18:102–113

    Article  PubMed  CAS  Google Scholar 

  15. Dogra C, Changotra H, Wergedal JE et al (2006) Regulation of phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor-kappa B signaling pathways in dystrophin-deficient skeletal muscle in response to mechanical stretch. J Cell Physiol 208:575–585

    Article  PubMed  CAS  Google Scholar 

  16. Messina S, Altavilla D, Aguennouz M et al (2006) Lipid peroxidation inhibition blunts nuclear factor-kappaB activation, reduces skeletal muscle degeneration, and enhances muscle function in mdx mice. Am J Pathol 168:918–926

    Article  PubMed  CAS  Google Scholar 

  17. Carlson CG, Samadi A, Siegel A (2005) Chronic treatment with agents that stabilize cytosolic IkappaB-alpha enhances survival and improves resting membrane potential in MDX muscle fibers subjected to chronic passive stretch. Neurobiol Dis 20:719–730

    Article  PubMed  CAS  Google Scholar 

  18. Messina S, Bitto A, Aguennouz M et al (2006) Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in mdx mice. Exp Neurol 198:234–241

    Article  PubMed  CAS  Google Scholar 

  19. Acharyya S, Villalta SA, Bakkar N et al (2007) Interplay of IKK/NF-kappaB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. J Clin Invest 117:889–901

    Article  PubMed  CAS  Google Scholar 

  20. Whitmarsh AJ, Davis RJ (2000) Regulation of transcription factor function by phosphorylation. Cell Mol Life Sci 57:1172–1183

    Article  PubMed  CAS  Google Scholar 

  21. Scheidereit C (1996) Transcription factors: important tools and targets for molecular medicine. J Mol Med 74:707–709

    Article  PubMed  CAS  Google Scholar 

  22. Kumar A, Chaudhry I, Reid MB et al (2002) Distinct signaling pathways are activated in response to mechanical stress applied axially and transversely to skeletal muscle fibers. J Biol Chem 277:46493–46503

    Article  PubMed  CAS  Google Scholar 

  23. Dogra C, Changotra H, Mohan S et al (2006) Tumor necrosis factor-like weak inducer of apoptosis inhibits skeletal myogenesis through sustained activation of nuclear factor-kappaB and degradation of MyoD protein. J Biol Chem 281:10327–10336

    Article  PubMed  CAS  Google Scholar 

  24. Woods DB, Vousden KH (2001) Regulation of p53 function. Exp Cell Res 264:56–66

    Article  PubMed  CAS  Google Scholar 

  25. Luo J, Li M, Tang Y et al (2004) Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc Natl Acad Sci USA 101:2259–2264

    Article  PubMed  CAS  Google Scholar 

  26. Rodriguez MS, Desterro JM, Lain S et al (1999) SUMO-1 modification activates the transcriptional response of p53. EMBO J 18:6455–6461

    Article  PubMed  CAS  Google Scholar 

  27. Rando TA (2001) The dystrophin–glycoprotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies. Muscle Nerve 24:1575–94

    Article  PubMed  CAS  Google Scholar 

  28. Engvall E, Wewer UM (2003) The new frontier in muscular dystrophy research: booster genes. FASEB J 17:1579–1584

    Article  PubMed  CAS  Google Scholar 

  29. Latchman DS (2000) Transcription factors as potential targets for therapeutic drugs. Curr Pharm Biotechnol 1:57–61

    Article  PubMed  CAS  Google Scholar 

  30. Chen YW, Nagaraju K, Bakay M et al (2005) Early onset of inflammation and later involvement of TGFbeta in Duchenne muscular dystrophy. Neurology 65:826–834

    Article  PubMed  CAS  Google Scholar 

  31. Monici MC, Aguennouz M, Mazzeo A et al (2003) Activation of nuclear factor-kappaB in inflammatory myopathies and Duchenne muscular dystrophy. Neurology 60:993–997

    PubMed  CAS  Google Scholar 

  32. Jiang X, Norman M, Roth L et al (2004) Protein–DNA array-based identification of transcription factor activities regulated by interaction with the glucocorticoid receptor. J Biol Chem 279:38480–38485

    Article  PubMed  CAS  Google Scholar 

  33. Disatnik MH, Dhawan J, Yu Y (1998) Evidence of oxidative stress in mdx mouse muscle: studies of the pre-necrotic state. J Neurol Sci 161:77–84

    Article  PubMed  CAS  Google Scholar 

  34. Spencer MJ, Tidball JG (2001) Do immune cells promote the pathology of dystrophin-deficient myopathies? Neuromuscul Disord 11:556–564

    Article  PubMed  CAS  Google Scholar 

  35. Wehling-Henricks M, Lee JJ, Tidball JG (2004) Prednisolone decreases cellular adhesion molecules required for inflammatory cell infiltration in dystrophin-deficient skeletal muscle. Neuromuscul Disord 14:483–490

    Article  PubMed  Google Scholar 

  36. Galvagni F, Cantini M, Oliviero S (2002) The utrophin gene is transcriptionally up-regulated in regenerating muscle. J Biol Chem 277:19106–19113

    Article  PubMed  CAS  Google Scholar 

  37. Perkins KJ, Davies KE (2003) Ets, Ap-1 and GATA factor families regulate the utrophin B promoter: potential regulatory mechanisms for endothelial-specific expression. FEBS Lett 538:168–172

    Article  PubMed  CAS  Google Scholar 

  38. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16

    Article  PubMed  CAS  Google Scholar 

  39. Kastan MB, Onyekwere O, Sidransky D et al (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311

    PubMed  CAS  Google Scholar 

  40. Siu PM, Pistilli EE, Murlasits Z et al (2006) Hindlimb unloading increases muscle content of cytosolic but not nuclear Id2 and p53 proteins in young adult and aged rats. J Appl Physiol 100:907–916

    Article  PubMed  CAS  Google Scholar 

  41. Siu PM, Alway SE (2005) Id2 and p53 participate in apoptosis during unloading-induced muscle atrophy. Am J Physiol Cell Physiol 288:C1058–C1073

    Article  PubMed  CAS  Google Scholar 

  42. Siu PM, Alway SE (2005) Subcellular responses of p53 and Id2 in fast and slow skeletal muscle in response to stretch-induced overload. J Appl Physiol 99:1897–1904

    Article  PubMed  CAS  Google Scholar 

  43. Ohnishi T, Takahashi A, Wang X (1999) Accumulation of a tumor suppressor p53 protein in rat muscle during a space flight. Mutat Res 430:271–274

    PubMed  CAS  Google Scholar 

  44. Siu PM, Alway SE (2005) Mitochondria-associated apoptotic signalling in denervated rat skeletal muscle. J Physiol 565:309–323

    Article  PubMed  CAS  Google Scholar 

  45. Tergaonkar V, Perkins ND (2007) p53 and NF-kappaB crosstalk: IKKalpha tips the balance. Mol Cell 26:158–159

    Article  PubMed  CAS  Google Scholar 

  46. Bohuslav J, Chen LF, Kwon H et al (2004) p53 induces NF-kappaB activation by an IkappaB kinase-independent mechanism involving phosphorylation of p65 by ribosomal S6 kinase 1. J Biol Chem 279:26115–26125

    Article  PubMed  CAS  Google Scholar 

  47. Huang WC, Ju TK, Hung MC et al (2007) Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. Mol Cell 26:75–87

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by funding from the Muscular Dystrophy Association and National Institute of Health (RO1 AG029623) to AK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 864 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dogra, C., Srivastava, D.S. & Kumar, A. Protein–DNA array-based identification of transcription factor activities differentially regulated in skeletal muscle of normal and dystrophin-deficient mdx mice. Mol Cell Biochem 312, 17–24 (2008). https://doi.org/10.1007/s11010-008-9716-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9716-6

Keywords

Navigation