Skip to main content

Advertisement

Log in

Neutral endopeptidase is a myristoylated protein

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Neutral endopeptidase (NEP) is a cell-surface peptidase normally expressed by prostate epithelial cells and lost in ~50% of primary prostate cancers. NEP directly associates with multiple proteins at the cell surface including Ezrin/Radixin/Moesin (ERM) proteins and the PTEN tumor suppressor protein. Analysis of the N-terminal sequence of the NEP cytosolic domain (N-terminal MGKSESQMDI TDINTPKPKK KQRWTR) identified a myristoylation consensus site. Mutation of Gly-2 to Arg significantly decreased 3H-myristoylation activity, and correlated with translocation of NEP from the plasma membrane to a perinuclear domain as demonstrated by immunofluorescence staining and Western blotting with an NEP-specific antibody. Removal of this myristoylation residue did not affect NEP enzymatic specific activity. Myristoylated NEP recruited more PTEN protein to the cell membrane fraction than unmyristoylated NEP. These data demonstrate that NEP is myristoylated at Gly-2 and that this modification is an intrinsic signal for membrane targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Farazi TA, Waksman G, Gordon JI (2001) The biology and enzymology of protein N-myristoylation. J Biol Chem 276:39501–39504

    Article  CAS  PubMed  Google Scholar 

  2. Gordon JI (1990) Protein N-myristoylation: simple questions, unexpected answers. Clin Res 38:517–528

    CAS  PubMed  Google Scholar 

  3. Han KK, Martinage A (1992) Post-translational chemical modification(s) of proteins. Int J Biochem 24:19–28

    Article  CAS  PubMed  Google Scholar 

  4. Johnson DR, Bhatnagar RS, Knoll LJ, Gordon JI (1994) Genetic and biochemical studies of protein N-myristoylation. Annu Rev Biochem 63:869–914

    Article  CAS  PubMed  Google Scholar 

  5. Boutin JA (1997) Myristoylation. Cell Signal 9:15–35

    Article  CAS  PubMed  Google Scholar 

  6. Mende I, Malstrom S, Tsichlis PN, Vogt PK, Aoki M (2001) Oncogenic transformation induced by membrane-targeted Akt2 and Akt3. Oncogene 20:4419–4423

    Article  CAS  PubMed  Google Scholar 

  7. Selvakumar P, Lakshmikuttyamma A, Shrivastav A, Das SB, Dimmock JR, Sharma RK (2007) Potential role of N-myristoyltransferase in cancer. Prog Lipid Res 46:1–36

    Article  CAS  PubMed  Google Scholar 

  8. Podell S, Gribskov M (2004) Predicting N-terminal myristoylation sites in plant proteins. BMC Genomics 5:37

    Article  PubMed  Google Scholar 

  9. Kahn RA, Randazzo P, Serafini T, Weiss O, Rulka C, Clark J, Amherdt M, Roller P, Orci L, Rothman JE (1992) The amino terminus of ADP-ribosylation factor (ARF) is a critical determinant of ARF activities and is a potent and specific inhibitor of protein transport. J Biol Chem 267:13039–13046

    CAS  PubMed  Google Scholar 

  10. Preininger AM, Parello J, Meier SM, Liao G, Hamm HE (2008) Receptor-mediated changes at the myristoylated amino terminus of Galpha(il) proteins. Biochemistry 47:10281–10293

    Article  CAS  PubMed  Google Scholar 

  11. Shen R, Sumitomo M, Dai J, Hardy DO, Navarro D, Usmani B, Papandreou CN, Hersh LB, Shipp MA, Freedman LP, Nanus DM (2000) Identification and characterization of two androgen response regions in the human neutral endopeptidase gene. Mol Cell Endocrinol 170:131–142

    Article  CAS  PubMed  Google Scholar 

  12. Shipp MA, Look AT (1993) Hematopoietic differentiation antigens that are membrane-associated enzymes: cutting is the key!. Blood 82:1052–1070

    CAS  PubMed  Google Scholar 

  13. Ino K, Suzuki T, Uehara C, Nagasaka T, Okamoto T, Kikkawa F, Mizutani S (2000) The expression and localization of neutral endopeptidase 24.11/CD10 in human gestational trophoblastic diseases. Lab Invest 80:1729–1738

    Article  CAS  PubMed  Google Scholar 

  14. Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang SM, Suemoto T, Higuchi M, Saido TC (2005) Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat Med 11:434–439

    Article  CAS  PubMed  Google Scholar 

  15. Papandreou CN, Usmani B, Geng Y, Bogenrieder T, Freeman R, Wilk S, Finstad CL, Reuter VE, Powell CT, Scheinberg D, Magill C, Scher HI, Albino AP, Nanus DM (1998) Neutral endopeptidase 24.11 loss in metastatic human prostate cancer contributes to androgen-independent progression. Nat Med 4:50–57

    Article  CAS  PubMed  Google Scholar 

  16. Turner AJ, Tanzawa K (1997) Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX. Faseb J 11:355–364

    CAS  PubMed  Google Scholar 

  17. Iwase A, Shen R, Navarro D, Nanus DM (2004) Direct binding of neutral endopeptidase 24.11 to ezrin/radixin/moesin (ERM) proteins competes with the interaction of CD44 with ERM proteins. J Biol Chem 279:11898–11905

    Article  CAS  PubMed  Google Scholar 

  18. Sumitomo M, Iwase A, Zheng R, Navarro D, Kaminetzky D, Shen R, Georgescu MM, Nanus DM (2004) Synergy in tumor suppression by direct interaction of neutral endopeptidase with PTEN. Cancer Cell 5:67–78

    Article  CAS  PubMed  Google Scholar 

  19. D’Adamio L, Shipp MA, Masteller EL, Reinherz EL (1989) Organization of the gene encoding common acute lymphoblastic leukemia antigen (neutral endopeptidase 24.11): multiple miniexons and separate 5′ untranslated regions. Proc Natl Acad Sci USA 86:7103–7107

    Article  PubMed  Google Scholar 

  20. King MJ, Sharma RK (1991) N-myristoyl transferase assay using phosphocellulose paper binding. Anal Biochem 199:149–153

    Article  CAS  PubMed  Google Scholar 

  21. Horiguchi A, Zheng R, Goodman OB Jr, Shen R, Guan H, Hersh LB, Nanus DM (2007) Lentiviral vector neutral endopeptidase gene transfer suppresses prostate cancer tumor growth. Cancer Gene Ther 14:583–589

    Article  CAS  PubMed  Google Scholar 

  22. Zambrano N, Minopoli G, de Candia P, Russo T (1998) The Fe65 adaptor protein interacts through its PID1 domain with the transcription factor CP2/LSF/LBP1. J Biol Chem 273:20128–20133

    Article  CAS  PubMed  Google Scholar 

  23. Katagiri YU, Ohmi K, Tang W, Takenouchi H, Taguchi T, Kiyokawa N, Fujimoto J (2002) Raft.1, a monoclonal antibody raised against the raft microdomain, recognizes G-protein beta1 and 2, which assemble near nucleus after shiga toxin binding to human renal cell line. Lab Invest 82:1735–1745

    CAS  PubMed  Google Scholar 

  24. Abbott DW, Holt JT (1997) Finkel-Biskis-Reilly mouse osteosarcoma virus v-fos inhibits the cellular response to ionizing radiation in a myristoylation-dependent manner. J Biol Chem 272:14005–14008

    Article  CAS  PubMed  Google Scholar 

  25. Grebe M, Xu J, Mobius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387

    Article  CAS  PubMed  Google Scholar 

  26. Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12:1667–1678

    Article  CAS  PubMed  Google Scholar 

  27. Lu SX, Hrabak EM (2002) An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. Plant Physiol 128:1008–1021

    Article  CAS  PubMed  Google Scholar 

  28. Rutschmann F, Stalder U, Piotrowski M, Oecking C, Schaller A (2002) LeCPK1, a calcium-dependent protein kinase from tomato plasma membrane targeting and biochemical characterization. Plant Physiol 129:156–168

    Article  CAS  PubMed  Google Scholar 

  29. Resh MD (1999) Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1451:1–16

    Article  CAS  PubMed  Google Scholar 

  30. Olsen HB, Kaarsholm NC (2000) Structural effects of protein lipidation as revealed by LysB29-myristoyl, des(B30) insulin. Biochemistry 39:11893–11900

    Article  CAS  PubMed  Google Scholar 

  31. Goldberg J (1998) Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95:237–248

    Article  CAS  PubMed  Google Scholar 

  32. Hermida-Matsumoto L, Resh MD (1999) Human immunodeficiency virus type 1 protease triggers a myristoyl switch that modulates membrane binding of Pr55(gag) and p17MA. J Virol 73:1902–1908

    CAS  PubMed  Google Scholar 

  33. Shen R, Sumitomo M, Dai J, Harris A, Kaminetzky D, Gao M, Burnstein KL, Nanus DM (2000) Androgen-induced growth inhibition of androgen receptor expressing androgen-independent prostate cancer cells is mediated by increased levels of neutral endopeptidase. Endocrinology 141:1699–1704

    Article  CAS  PubMed  Google Scholar 

  34. Sumitomo M, Shen R, Walburg M, Dai J, Geng Y, Navarro D, Boileau G, Papandreou CN, Giancotti FG, Knudsen B, Nanus DM (2000) Neutral endopeptidase inhibits prostate cancer cell migration by blocking focal adhesion kinase signaling. J Clin Invest 106:1399–1407

    Article  CAS  PubMed  Google Scholar 

  35. Zheng R, Iwase A, Shen R, Goodman OB Jr, Sugimoto N, Takuwa Y, Lerner DJ, Nanus DM (2006) Neuropeptide-stimulated cell migration in prostate cancer cells is mediated by RhoA kinase signaling and inhibited by neutral endopeptidase. Oncogene 25:5942–5952

    Article  CAS  PubMed  Google Scholar 

  36. Goodman OB Jr, Febbraio M, Simantov R, Zheng R, Shen R, Silverstein RL, Nanus DM (2006) Neprilysin inhibits angiogenesis via proteolysis of fibroblast growth factor-2. J Biol Chem 281:33597–33605

    Article  CAS  PubMed  Google Scholar 

  37. Albrecht M, Mittler A, Wilhelm B, Lundwall A, Lilja H, Aumuller G, Bjartell A (2003) Expression and immunolocalisation of neutral endopeptidase in prostate cancer. Eur Urol 44:415–422

    Article  CAS  PubMed  Google Scholar 

  38. Osman I, Yee H, Taneja SS, Levinson B, Zeleniuch-Jacquotte A, Chang C, Nobert C, Nanus DM (2004) Neutral endopeptidase protein expression and prognosis in localized prostate cancer. Clin Cancer Res 10:4096–4100

    Article  CAS  PubMed  Google Scholar 

  39. Fleischmann A, Schlomm T, Huland H, Kollermann J, Simon P, Mirlacher M, Salomon G, Chun FH, Steuber T, Simon R, Sauter G, Graefen M, Erbersdobler A (2008) Distinct subcellular expression patterns of neutral endopeptidase (CD10) in prostate cancer predict diverging clinical courses in surgically treated patients. Clin Cancer Res 14:7838–7842

    Article  CAS  PubMed  Google Scholar 

  40. Hersh LB, Rodgers DW (2008) Neprilysin and amyloid beta peptide degradation. Curr Alzheimer Res 5:225–231

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants RO1 DK060908-02, RO1 CA80240, R01 HD33000, the Robert H. McCooey Memorial Cancer Research Fund, Ronald and Susan Lynch Professorship in Urologic Oncology and Brady Urology Foundation of the Department of Urology (to Lee, J.). and DOD grant PC061655. The authors also thank Liza Lau and Samrina Kahlon for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Nanus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, R., Horiguchi, A., Iida, K. et al. Neutral endopeptidase is a myristoylated protein. Mol Cell Biochem 335, 173–180 (2010). https://doi.org/10.1007/s11010-009-0253-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0253-8

Keywords

Navigation