Skip to main content

Advertisement

Log in

ERK activation and cell growth require CaM kinases in MCF-7 breast cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Previous studies on MCF-7 breast cancer cells have shown that the G-protein coupled receptor (GPCR) agonist carbachol increases intracellular calcium levels and the activation of extracellular signal-regulated kinase (ERK). Calcium and calmodulin regulate the calcium/calmodulin-dependent kinase (CaM kinase) family of proteins that have been proposed to regulate ERK and gene transcription. Our results suggest that both estrogen (E2) and carbachol treatment of MCF-7 breast cancer cells trigger phosphorylation of ERK1/2 and the transcription factor Elk-1. Carbachol and estrogen triggered nearly a four- to sixfold increase in MCF-7 cell proliferation by 96 h, respectively. Carbachol-stimulated ERK activation and cell growth was completely blocked by the Muscarinic M3-subtype GPCR inhibitor, 4-DAMP, and siRNA against the M3-subtype GPCR. Interestingly, blockade of CaM KK with the selective inhibitor STO-609 prevented carbachol activation CaM KI, ERK, Elk-1, and cell growth. Consistent with these observations, knockdown of CaM KKα and CaM KIγ with shRNA-containing plasmids blocked ERK activation by carbachol. In addition, Elk-1 phosphorylation and luciferase activity in response to carbachol treatment was also dependent upon CaM kinases and was inhibited by U0126, STO-609, and siRNA knockdown of CaM kinases and ERK2. Finally, blockade of either CaM KK (with STO-609) or ERK (with U0126) activities resulted in the inhibition of carbachol- and estrogen-mediated cyclin D1 expression and MCF-7 cell growth. Taken together, our results suggest that carbachol treatment of MCF-7 cells activates CaM KI, ERK, the transcription factor Elk-1, cyclin D1, and cell growth through CaM KK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MAPK:

Mitogen-activated protein kinase

ERK:

Extracellular signal-regulated kinase

CaM:

Calmodulin

AKT:

Protein kinase B

EGF:

Epidermal growth factor

β-Estradiol:

Estrogen (E2)

CaM kinase:

Calcium/calmodulin-dependent protein kinase

References

  1. Shaul YD, Seger R (2007) The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta 1773:1213–1226. doi:10.1016/j.bbamcr.2006.10.005

    Article  CAS  PubMed  Google Scholar 

  2. Agell N, Bachs O, Rocamora N, Villalonga P (2002) Modulation of the Ras/Raf/MEK/ERK pathway by Ca(2+), and calmodulin. Cell Signal 14:649–654. doi:10.1016/s0898-6568(02)00007-4

    Article  CAS  PubMed  Google Scholar 

  3. Stork PJ, Schmitt JM (2002) Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 12:258–266

    Article  CAS  PubMed  Google Scholar 

  4. Jimenez E, Montiel M (2005) Activation of MAP kinase by muscarinic cholinergic receptors induces cell proliferation and protein synthesis in human breast cancer cells. J Cell Physiol 204:678–686

    Article  CAS  PubMed  Google Scholar 

  5. Wagstaff SC, Bowler WB, Gallagher JA, Hipskind RA (2000) Extracellular ATP activates multiple signalling pathways and potentiates growth factor-induced c-fos gene expression in MCF-7 breast cancer cells. Carcinogenesis 21:2175–2181

    Article  CAS  PubMed  Google Scholar 

  6. Chen CC, Lee WR, Safe S (2004) Egr-1 is activated by 17beta-estradiol in MCF-7 cells by mitogen-activated protein kinase-dependent phosphorylation of ELK-1. J Cell Biochem 93:1063–1074. doi:10.1002/jcb.20257

    Article  CAS  PubMed  Google Scholar 

  7. Improta-Brears T, Whorton AR, Codazzi F, York JD, Meyer T, McDonnell DP (1999) Estrogen-induced activation of mitogen-activated protein kinase requires mobilization of intracellular calcium. Proc Natl Acad Sci USA 96:4686–4691

    Article  CAS  PubMed  Google Scholar 

  8. Muscella A, Greco S, Elia MG, Storelli C, Marsigliante S (2003) PKC-zeta is required for angiotensin II-induced activation of ERK and synthesis of C-FOS in MCF-7 cells. J Cell Physiol 197:61–68. doi:10.1002/jcp.10336

    Article  CAS  PubMed  Google Scholar 

  9. Gutzman JH, Nikolai SE, Rugowski DE, Watters JJ, Schuler LA (2005) Prolactin and estrogen enhance the activity of activating protein 1 in breast cancer cells: role of extracellularly regulated kinase 1/2-mediated signals to c-fos. Mol Endocrinol 19:1765–1778. doi:10.1210/me.2004-0339

    Article  CAS  PubMed  Google Scholar 

  10. Anderson KA, Ribar TJ, Lin F, Noeldner PK, Green MF, Muehlbauer MJ, Witters LA, Kemp BE, Means AR (2008) Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab 7:377–388. doi:10.1016/j.cmet.2008.02.011

    Article  CAS  PubMed  Google Scholar 

  11. Vazquez SM, Mladovan AG, Perez C, Bruzzone A, Baldi A, Luthy IA (2006) Human breast cell lines exhibit functional alpha2-adrenoceptors. Cancer Chemother Pharmacol 58:50–61. doi:10.1007/s00280-005-0130-4

    Article  CAS  PubMed  Google Scholar 

  12. Bastian P, Lang K, Niggemann B, Zaenker KS, Entschladen F (2005) Myosin regulation in the migration of tumor cells and leukocytes within a three-dimensional collagen matrix. Cell Mol Life Sci 62:65–76. doi:10.1007/s00018-004-4391-6

    Article  CAS  PubMed  Google Scholar 

  13. Pedram A, Razandi M, Levin ER (2006) Nature of functional estrogen receptors at the plasma membrane. Mol Endocrinol 20:1996–2009. doi:10.1210/me.2005-0525

    Article  CAS  PubMed  Google Scholar 

  14. Colomer J, Means AR (2007) Physiological roles of the Ca2+/CaM-dependent protein kinase cascade in health and disease. Subcell Biochem 45:169–214

    Article  CAS  PubMed  Google Scholar 

  15. Wayman GA, Lee YS, Tokumitsu H, Silva A, Soderling TR (2008) Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59:914–931. doi:10.1016/j.neuron.2008.08.021

    Article  CAS  PubMed  Google Scholar 

  16. Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322–328. doi:10.1016/s0962-8924(00)01800-6

    Article  CAS  PubMed  Google Scholar 

  17. Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, Mathiasen IS, Jaattela M (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25:193–205. doi:10.1016/j.molcel.2006.12.009

    Article  PubMed  Google Scholar 

  18. Illario M, Giardino-Torchia ML, Sankar U, Ribar TJ, Galgani M, Vitiello L, Masci AM, Bertani FR, Ciaglia E, Astone D, Maulucci G, Cavallo A, Vitale M, Cimini V, Pastore L, Means AR, Rossi G, Racioppi L (2008) Calmodulin-dependent kinase IV links Toll-like receptor 4 signaling with survival pathway of activated dendritic cells. Blood 111:723–731. doi:10.1182/blood-2007-05-091173

    Article  CAS  PubMed  Google Scholar 

  19. Wayman GA, Impey S, Marks D, Saneyoshi T, Grant WF, Derkach V, Soderling TR (2006) Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron 50:897–909

    Article  CAS  PubMed  Google Scholar 

  20. Saneyoshi T, Wayman G, Fortin D, Davare M, Hoshi N, Nozaki N, Natsume T, Soderling TR (2008) Activity-dependent synaptogenesis: regulation by a CaM-kinase kinase/CaM-kinase I/betaPIX signaling complex. Neuron 57:94–107

    Article  CAS  PubMed  Google Scholar 

  21. Schmitt JM, Wayman GA, Nozaki N, Soderling TR (2004) Calcium activation of ERK mediated by calmodulin kinase I. J Biol Chem 279:24064–24072

    Article  CAS  PubMed  Google Scholar 

  22. Kelleher RJ III, Govindarajan A, Jung HY, Kang H, Tonegawa S (2004) Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116:467–479

    Article  CAS  PubMed  Google Scholar 

  23. Schmitt JM, Guire ES, Saneyoshi T, Soderling TR (2005) Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation. J Neurosci 25:1281–1290

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez-Mora OG, LaHair MM, McCubrey JA, Franklin RA (2005) Calcium/calmodulin-dependent kinase I and calcium/calmodulin-dependent kinase kinase participate in the control of cell cycle progression in MCF-7 human breast cancer cells. Cancer Res 65:5408–5416

    Article  CAS  PubMed  Google Scholar 

  25. McKay MM, Morrison DK (2007) Integrating signals from RTKs to ERK/MAPK. Oncogene 26:3113–3121. doi:10.1038/sj.onc.1210394

    Article  CAS  PubMed  Google Scholar 

  26. Aplin AE, Stewart SA, Assoian RK, Juliano RL (2001) Integrin-mediated adhesion regulates ERK nuclear translocation and phosphorylation of Elk-1. J Cell Biol 153:273–282

    Article  CAS  PubMed  Google Scholar 

  27. Davis S, Vanhoutte P, Pages C, Caboche J, Laroche S (2000) The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J Neurosci 20:4563–4572. doi:0270-6474/00/204563-10

    CAS  PubMed  Google Scholar 

  28. Cammarota M, Bevilaqua LR, Ardenghi P, Paratcha G, Levi de Stein M, Izquierdo I, Medina JH (2000) Learning-associated activation of nuclear MAPK, CREB and Elk-1, along with Fos production, in the rat hippocampus after a one-trial avoidance learning: abolition by NMDA receptor blockade. Brain Res Mol Brain Res 76:36–46. doi:10.1016/s0169-328x(99)00329-0

    Article  CAS  PubMed  Google Scholar 

  29. Duan R, Xie W, Burghardt RC, Safe S (2001) Estrogen receptor-mediated activation of the serum response element in MCF-7 cells through MAPK-dependent phosphorylation of Elk-1. J Biol Chem 276:11590–11598. doi:10.1074/jbc.M005492200

    Article  CAS  PubMed  Google Scholar 

  30. Vicent GP, Ballare C, Nacht AS, Clausell J, Subtil-Rodriguez A, Quiles I, Jordan A, Beato M (2006) Induction of progesterone target genes requires activation of Erk and Msk kinases and phosphorylation of histone H3. Mol Cell 24:367–381. doi:10.1016/j.molcel.2006.10.011

    Article  CAS  PubMed  Google Scholar 

  31. Perez de Obanos MP, Lopez Zabalza MJ, Prieto J, Herraiz MT, Iraburu MJ (2006) Leucine stimulates procollagen alpha1(I) translation on hepatic stellate cells through ERK and PI3K/Akt/mTOR activation. J Cell Physiol 209:580–586. doi:10.1002/jcp.20790

    Article  PubMed  Google Scholar 

  32. Sananbenesi F, Fischer A, Schrick C, Spiess J, Radulovic J (2002) Phosphorylation of hippocampal Erk-1/2, Elk-1, and p90-Rsk-1 during contextual fear conditioning: interactions between Erk-1/2 and Elk-1. Mol Cell Neurosci 21:463–476. doi:10.1006/mcne.2002.1188

    Article  CAS  PubMed  Google Scholar 

  33. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J, Sonenberg N, Blenis J (2007) RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem 282:14056–14064. doi:10.1074/jbc.M700906200

    Article  CAS  PubMed  Google Scholar 

  34. Sinnett-Smith J, Zhukova E, Rey O, Rozengurt E (2007) Protein kinase D2 potentiates MEK/ERK/RSK signaling, c-Fos accumulation and DNA synthesis induced by bombesin in Swiss 3T3 cells. J Cell Physiol 211:781–790. doi:10.1002/jcp.20984

    Article  CAS  PubMed  Google Scholar 

  35. Cavigelli M, Dolfi F, Claret FX, Karin M (1995) Induction of c-fos expression through JNK-mediated TCF/Elk-1 phosphorylation. EMBO J 14:5957–5964

    CAS  PubMed  Google Scholar 

  36. Murai K, Treisman R (2002) Interaction of serum response factor (SRF) with the Elk-1 B box inhibits RhoA-actin signaling to SRF and potentiates transcriptional activation by Elk-1. Mol Cell Biol 22:7083–7092

    Article  CAS  PubMed  Google Scholar 

  37. Cruzalegui FH, Cano E, Treisman R (1999) ERK activation induces phosphorylation of Elk-1 at multiple S/T-P motifs to high stoichiometry. Oncogene 18:7948–7957. doi:10.1038/sj.onc.1203362

    Article  CAS  PubMed  Google Scholar 

  38. Price MA, Rogers AE, Treisman R (1995) Comparative analysis of the ternary complex factors Elk-1, SAP-1a and SAP-2 (ERP/NET). EMBO J 14:2589–2601

    CAS  PubMed  Google Scholar 

  39. Marais R, Wynne J, Treisman R (1993) The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73:381–393

    Article  CAS  PubMed  Google Scholar 

  40. Li X, Zhang S, Safe S (2006) Activation of kinase pathways in MCF-7 cells by 17beta-estradiol and structurally diverse estrogenic compounds. J Steroid Biochem Mol Biol 98:122–132. doi:10.1016/j.jsbmb.2005.08.018

    Article  CAS  PubMed  Google Scholar 

  41. Gillett C, Fantl V, Smith R, Fisher C, Bartek J, Dickson C, Barnes D, Peters G (1994) Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res 54:1812–1817

    CAS  PubMed  Google Scholar 

  42. Roy PG, Thompson AM (2006) Cyclin D1 and breast cancer. Breast 15:718–727. doi:10.1016/j.breast.2006.02.005

    Article  PubMed  Google Scholar 

  43. Ormandy CJ, Musgrove EA, Hui R, Daly RJ, Sutherland RL (2003) Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Res Treat 78:323–335

    Article  CAS  PubMed  Google Scholar 

  44. Enslen H, Tokumitsu H, Stork PJ, Davis RJ, Soderling TR (1996) Regulation of mitogen-activated protein kinases by a calcium/calmodulin-dependent protein kinase cascade. Proc Natl Acad Sci USA 93:10803–10808

    Article  CAS  PubMed  Google Scholar 

  45. Schmitt JM, Stork PJ (2001) Cyclic AMP-mediated inhibition of cell growth requires the small G protein Rap1. Mol Cell Biol 21:3671–3683

    Article  CAS  PubMed  Google Scholar 

  46. Tokumitsu H, Inuzuka H, Ishikawa Y, Ikeda M, Saji I, Kobayashi R (2002) STO-609, a specific inhibitor of the Ca(2+)/calmodulin-dependent protein kinase kinase. J Biol Chem 277:15813–15818

    Article  CAS  PubMed  Google Scholar 

  47. Vossler MR, Yao H, York RD, Pan MG, Rim CS, Stork PJ (1997) cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell 89:73–82

    Article  CAS  PubMed  Google Scholar 

  48. Hodge C, Liao J, Stofega M, Guan K, Carter-Su C, Schwartz J (1998) Growth hormone stimulates phosphorylation and activation of elk-1 and expression of c-fos, egr-1, and junB through activation of extracellular signal-regulated kinases 1 and 2. J Biol Chem 273:31327–31336

    Article  CAS  PubMed  Google Scholar 

  49. Uht RM, Amos S, Martin PM, Riggan AE, Hussaini IM (2007) The protein kinase C-eta isoform induces proliferation in glioblastoma cell lines through an ERK/Elk-1 pathway. Oncogene 26:2885–2893. doi:10.1038/sj.onc.1210090

    Article  CAS  PubMed  Google Scholar 

  50. Sabbah M, Courilleau D, Mester J, Redeuilh G (1999) Estrogen induction of the cyclin D1 promoter: involvement of a cAMP response-like element. Proc Natl Acad Sci USA 96:11217–11222

    Article  CAS  PubMed  Google Scholar 

  51. Means AR (2008) The year in basic science: calmodulin kinase cascades. Mol Endocrinol 22:2759–2765. doi:10.1210/me.2008-0312

    Article  CAS  PubMed  Google Scholar 

  52. Si J, Collins SJ (2008) Activated Ca2+/calmodulin-dependent protein kinase IIgamma is a critical regulator of myeloid leukemia cell proliferation. Cancer Res 68:3733–3742. doi:10.1158/0008-5472.CAN-07-2509

    Article  CAS  PubMed  Google Scholar 

  53. House SJ, Ginnan RG, Armstrong SE, Singer HA (2007) Calcium/calmodulin-dependent protein kinase II-delta isoform regulation of vascular smooth muscle cell proliferation. Am J Physiol Cell Physiol 292:C2276–C2287. doi:10.1152/ajpcell.00606.2006

    Article  CAS  PubMed  Google Scholar 

  54. Yuan K, Chung LW, Siegal GP, Zayzafoon M (2007) Alpha-CaMKII controls the growth of human osteosarcoma by regulating cell cycle progression. Lab Invest 87:938–950. doi:10.1038/labinvest.3700658

    Article  CAS  PubMed  Google Scholar 

  55. Mamaeva OA, Kim J, Feng G, McDonald JM (2009) Calcium/calmodulin-dependent kinase II regulates notch-1 signaling in prostate cancer cells. J Cell Biochem 106:25–32. doi:10.1002/jcb.21973

    Article  CAS  PubMed  Google Scholar 

  56. Tokumitsu H, Chijiwa T, Hagiwara M, Mizutani A, Terasawa M, Hidaka H (1990) KN-62, 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazi ne, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 265:4315–4320

    CAS  PubMed  Google Scholar 

  57. Tokumitsu H, Enslen H, Soderling TR (1995) Characterization of a Ca2+/calmodulin-dependent protein kinase cascade. Molecular cloning and expression of calcium/calmodulin-dependent protein kinase kinase. J Biol Chem 270:19320–19324

    Article  CAS  PubMed  Google Scholar 

  58. Lee JC, Edelman AM (1994) A protein activator of Ca(2+)-calmodulin-dependent protein kinase Ia. J Biol Chem 269:2158–2164

    CAS  PubMed  Google Scholar 

  59. Selbert MA, Anderson KA, Huang QH, Goldstein EG, Means AR, Edelman AM (1995) Phosphorylation and activation of Ca(2+)-calmodulin-dependent protein kinase IV by Ca(2+)-calmodulin-dependent protein kinase Ia kinase. Phosphorylation of threonine 196 is essential for activation. J Biol Chem 270:17616–17621

    Article  CAS  PubMed  Google Scholar 

  60. Cruzalegui FH, Means AR (1993) Biochemical characterization of the multifunctional Ca2+/calmodulin-dependent protein kinase type IV expressed in insect cells. J Biol Chem 268:26171–26178

    CAS  PubMed  Google Scholar 

  61. Impey S, Fong AL, Wang Y, Cardinaux JR, Fass DM, Obrietan K, Wayman GA, Storm DR, Soderling TR, Goodman RH (2002) Phosphorylation of CBP mediates transcriptional activation by neural activity and CaM kinase IV. Neuron 34:235–244. doi:10.1016/s0896-6273(02)00654-z

    Article  CAS  PubMed  Google Scholar 

  62. Qin C, Nguyen T, Stewart J, Samudio I, Burghardt R, Safe S (2002) Estrogen up-regulation of p53 gene expression in MCF-7 breast cancer cells is mediated by calmodulin kinase IV-dependent activation of a nuclear factor kappaB/CCAAT-binding transcription factor-1 complex. Mol Endocrinol 16:1793–1809

    Article  CAS  PubMed  Google Scholar 

  63. Takai N, Ueda T, Nasu K, Yamashita S, Toyofuku M, Narahara H (2009) Targeting calcium/calmodulin-dependence kinase I and II as a potential anti-proliferation remedy for endometrial carcinomas. Cancer Lett 277:235–243. doi:10.1016/j.canlet.2008.12.018

    Google Scholar 

  64. Wayman GA, Kaech S, Grant WF, Davare M, Impey S, Tokumitsu H, Nozaki N, Banker G, Soderling TR (2004) Regulation of axonal extension and growth cone motility by calmodulin-dependent protein kinase I. J Neurosci 24:3786–3794. doi:10.1523/JNEUROSCI.3294-03.2004

    Article  CAS  PubMed  Google Scholar 

  65. Kahl CR, Means AR (2004) Regulation of cyclin D1/Cdk4 complexes by calcium/calmodulin-dependent protein kinase I. J Biol Chem 279:15411–15419. doi:10.1074/jbc.M312543200

    Article  CAS  PubMed  Google Scholar 

  66. Han XJ, Lu YF, Li SA, Kaitsuka T, Sato Y, Tomizawa K, Nairn AC, Takei K, Matsui H, Matsushita M (2008) CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 182:573–585. doi:10.1083/jcb.200802164

    Article  CAS  PubMed  Google Scholar 

  67. Francis H, Glaser S, Demorrow S, Gaudio E, Ueno Y, Venter J, Dostal D, Onori P, Franchitto A, Marzioni M, Vaculin S, Vaculin B, Katki K, Stutes M, Savage J, Alpini G (2008) Small mouse cholangiocytes proliferate in response to H1 histamine receptor stimulation by activation of the IP3/CaMK I/CREB pathway. Am J Physiol Cell Physiol 295:C499–C513. doi:10.1152/ajpcell.00369.2007

    Article  CAS  PubMed  Google Scholar 

  68. Pedersen ME, Fortunati D, Nielsen M, Brorson SH, Lekva T, Nissen-Meyer LS, Gautvik VT, Shahdadfar A, Gautvik KM, Jemtland R (2008) Calmodulin-dependent kinase 1beta is expressed in the epiphyseal growth plate and regulates proliferation of mouse calvarial osteoblasts in vitro. Bone 43:700–707. doi:10.1016/j.bone.2008.06.006

    Article  CAS  PubMed  Google Scholar 

  69. Nicke B, Detjen K, Logsdon CD (1999) Muscarinic cholinergic receptors activate both inhibitory and stimulatory growth mechanisms in NIH3T3 cells. J Biol Chem 274:21701–21706

    Article  CAS  PubMed  Google Scholar 

  70. Buckley MF, Sweeney KJ, Hamilton JA, Sini RL, Manning DL, Nicholson RI, deFazio A, Watts CK, Musgrove EA, Sutherland RL (1993) Expression and amplification of cyclin genes in human breast cancer. Oncogene 8:2127–2133

    CAS  PubMed  Google Scholar 

  71. Grillo M, Bott MJ, Khandke N, McGinnis JP, Miranda M, Meyyappan M, Rosfjord EC, Rabindran SK (2006) Validation of cyclin D1/CDK4 as an anticancer drug target in MCF-7 breast cancer cells: effect of regulated overexpression of cyclin D1 and siRNA-mediated inhibition of endogenous cyclin D1 and CDK4 expression. Breast Cancer Res Treat 95:185–194. doi:10.1007/s10549-005-9066-y

    Article  CAS  PubMed  Google Scholar 

  72. Klein EA, Assoian RK (2008) Transcriptional regulation of the cyclin D1 gene at a glance. J Cell Sci 121:3853–3857. doi:10.1242/jcs.039131

    Article  CAS  PubMed  Google Scholar 

  73. Klein EA, Campbell LE, Kothapalli D, Fournier AK, Assoian RK (2008) Joint requirement for Rac and ERK activities underlies the mid-G1 phase induction of cyclin D1 and S phase entry in both epithelial and mesenchymal cells. J Biol Chem 283:30911–30918. doi:10.1074/jbc.M804537200

    Article  CAS  PubMed  Google Scholar 

  74. Yang C, Klein EA, Assoian RK, Kazanietz MG (2008) Heregulin beta1 promotes breast cancer cell proliferation through Rac/ERK-dependent induction of cyclin D1 and p21Cip1. Biochem J 410:167–175. doi:10.1042/BJ20070781

    Article  CAS  PubMed  Google Scholar 

  75. Rossler OG, Henss I, Thiel G (2008) Transcriptional response to muscarinic acetylcholine receptor stimulation: regulation of Egr-1 biosynthesis by ERK, Elk-1, MKP-1, and calcineurin in carbachol-stimulated human neuroblastoma cells. Arch Biochem Biophys 470:93–102. doi:10.1016/j.abb.2007.11.008

    Article  PubMed  Google Scholar 

  76. Pellegrino MJ, Stork PJ (2006) Sustained activation of extracellular signal-regulated kinase by nerve growth factor regulates c-fos protein stabilization and transactivation in PC12 cells. J Neurochem 99:1480–1493. doi:10.1111/j.1471-4159.2006.04250.x

    Article  CAS  PubMed  Google Scholar 

  77. Monje P, Hernandez-Losa J, Lyons RJ, Castellone MD, Gutkind JS (2005) Regulation of the transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase PIN1. J Biol Chem 280:35081–35084. doi:10.1074/jbc.C500353200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Tom Soderling for providing reagents and helpful discussions and Luke Fletcher as well as Sean Nygaard for technical assistance. This work was supported in part by the Paul K. and Evalyn E. C. Richter Memorial Fund and the Holman Endowment for the Sciences at George Fox University to Andrea Wagner and Ellen Abell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Schmitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, J.M., Abell, E., Wagner, A. et al. ERK activation and cell growth require CaM kinases in MCF-7 breast cancer cells. Mol Cell Biochem 335, 155–171 (2010). https://doi.org/10.1007/s11010-009-0252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0252-9

Keywords

Navigation