Skip to main content

Advertisement

Log in

Early preconditioning protection against stunning in conscious sheep. Role of KATP channels

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of this study was to assess early preconditioning protection against stunning in conscious sheep and analyze the role of ATP-dependent potassium (KATP) channels in the protective mechanism. Chronically instrumented animals were submitted to a 12 min reversible ischemia and 2 h reperfusion. Early preconditioning, consisting of six 5 min occlusion–5 min reperfusion periods, followed by 45 min normoperfusion before the prolonged ischemia protected against stunning (P < 0.01). In these experimental conditions, current agents used to analyze sarcolemmal (sKATP) and mitochondrial (mKATP) KATP channels could not clearly establish their participation in the protective mechanism. At doses that inhibit sKATP channels they were unable to block preconditioning protection against stunning (glibenclamide) or conversely, blocked preconditioning at doses that do not inhibit these channels (HMR1098). Moreover, both mKATP channel agonists (diazoxide) and antagonists (5HD) protected against stunning, a response that could be due to their effect via an alternative mitochondrial pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mosca SM, Gelpi RJ, Cingolani HE (1993) Dissociation between myocardial relaxation and diastolic stiffness in the stunned heart: its prevention by ischemic preconditioning. Mol Cell Biochem 129:171–178. doi:10.1007/BF00926365

    Article  CAS  PubMed  Google Scholar 

  2. Ovize M, Przylenk K, Hale SL et al (1992) Preconditioning does not attenuate myocardial stunning. Circulation 85:2247–2254

    CAS  PubMed  Google Scholar 

  3. Berg JS, Christensen BO, Aagaard S et al (2005) Ischaemic preconditioning causes increased myocardial vascular resistance but no myocardial contractility changes in pigs after OPCAB. Interact Cardiovasc Thorac Surg 4:207–211. doi:10.1510/icvts.2004.091736

    Article  PubMed  Google Scholar 

  4. del Valle HF, Lascano EC, Negroni JA et al (2003) Absence of ischemic preconditioning protection in diabetic sheep hearts: role of sarcolemmal KATP channel dysfunction. Mol Cell Biochem 249:21–30. doi:10.1023/A:1024797530152

    Article  CAS  PubMed  Google Scholar 

  5. Noma A (1983) ATP-regulated K channels in cardiac muscle. Nature 305:147–148. doi:10.1038/305147a0

    Article  CAS  PubMed  Google Scholar 

  6. Gross GJ, Peart JN (2003) KATP channels and myocardial preconditioning: an update. Am J Physiol 285:H921–H930

    CAS  Google Scholar 

  7. Garlid KD (2000) Opening mitochondrial K(ATP) in the heart—what happens, and what does not happen. Basic Res Cardiol 95:275–279. doi:10.1007/s003950070046

    Article  CAS  PubMed  Google Scholar 

  8. Gross GJ, Auchampach JA (1992) Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 70:223–233

    CAS  PubMed  Google Scholar 

  9. Yao Z, Gross GJ (1994) Effects of the KATP channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs. Circulation 89:1769–1775

    CAS  PubMed  Google Scholar 

  10. Schulz R, Rose J, Heusch G (1994) Involvement of activation of ATP dependent potassium channels in ischemic preconditioning in swine. Am J Physiol 267:H1341–H1352

    CAS  PubMed  Google Scholar 

  11. Gross GJ, Fryer RM (1999) Sarcolemmal versus mitochondrial ATP channels and myocardial preconditioning. Circ Res 84:973–979

    CAS  PubMed  Google Scholar 

  12. O’Rourke B (2000) Myocardial KATP channels in preconditioning. Circ Res 87:845–855

    PubMed  Google Scholar 

  13. Jung O, Englert HC, Jung W et al (2000) The KATP channel blocker HMR 1883 does not abolish the benefit of ischemic preconditioning on myocardial infarct mass in anesthetized rabbits. Naunyn Schmiedebergs Arch Pharmacol 361:445–451. doi:10.1007/s002109900212

    Article  CAS  PubMed  Google Scholar 

  14. Pain T, Yang XM, Critz SD et al (2000) Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res 87:460–466

    CAS  PubMed  Google Scholar 

  15. Fryer RM, Ellis JT, Hsu AK et al (2000) Ischemic preconditioning in rats: role of mitochondrial KATP channel in preservation of mitochondrial function. Am J Physiol 278:H305–H312

    CAS  Google Scholar 

  16. Cohen MV, Yang XM, Liu GS et al (2001) Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial K(ATP) channels. Circ Res 89:273–278. doi:10.1161/hh1501.094266

    Article  CAS  PubMed  Google Scholar 

  17. Forbes RA, Steenbergen C, Murphy E (2001) Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res 88:802–809. doi:10.1161/hh0801.089342

    Article  CAS  PubMed  Google Scholar 

  18. Das B, Sarkar C (2005) Is the sarcolemmal or mitochondrial K(ATP) channel activation important in the antiarrhythmic and cardioprotective effects during acute ischemia/reperfusion in the intact anesthetized rabbit model? Life Sci 77:1226–1248. doi:10.1016/j.lfs.2004.12.042

    Article  CAS  PubMed  Google Scholar 

  19. du Toit EF, Genis A, Opie LH et al (2008) A role for the RISK pathway and K(ATP) channels in pre- and post-conditioning induced by levosimendan in the isolated guinea pig heart. Br J Pharmacol 154:41–50. doi:10.1038/bjp.2008.52

    Article  CAS  PubMed  Google Scholar 

  20. del Valle HF, Lascano EC, Negroni JA (2002) Ischemic preconditioning protection against stunning in conscious diabetic sheep: role of glucose, insulin, sarcolemmal and mitochondrial KATP channels. Cardiovasc Res 55:642–659. doi:10.1016/S0008-6363(02)00468-6

    Article  CAS  PubMed  Google Scholar 

  21. Lascano EC, del Valle HF, Negroni JA (2006) Role of the cyclooxygenase pathway in the protection against postischemic stunning in conscious sheep. Mol Cell Biochem 289:91–100. doi:10.1007/s11010-006-9152-4

    Article  CAS  PubMed  Google Scholar 

  22. Negroni JA, Lascano EC, del Valle HF et al (2002) ATP-sensitive potassium channels do not have a main role in mediating late preconditioning protection against arrhythmias and stunning in conscious sheep. Basic Res Cardiol 97:55–64. doi:10.1007/s395-002-8388-7

    Article  CAS  PubMed  Google Scholar 

  23. Lascano EC, Negroni JA, del Valle HF (2002) Ischemic shortening of action potential duration as a result of KATP channel opening attenuates myocardial stunning by reducing calcium influx. Mol Cell Biochem 236:53–61. doi:10.1023/A:1016198011919

    Article  CAS  PubMed  Google Scholar 

  24. Negroni JA, Lascano EC, del Valle HF (2007) Glibenclamide action on myocardial function and arrhythmia incidence in the healthy and diabetic heart. Cardiovasc Hematol Agents Med Chem 5:43–53

    CAS  PubMed  Google Scholar 

  25. Zhu BM, Miyamoto S, Nagasawa Y et al (2003) Effect of the sarcolemmal K(ATP) channel blocker HMR1098 on arrhythmias induced by programmed electrical stimulation in canine old myocardial infarction model: comparison with glibenclamide. J Pharmacol Sci 93:106–113. doi:10.1254/jphs.93.106

    Article  CAS  PubMed  Google Scholar 

  26. Niwano S, Inuo K, Morohoshi Y et al (2004) Mexiletine protects myocardium during acute ischemia by opening sarcolemmal K-ATP channel: studies in closed-chest acute ischemia model in rabbits. J Cardiovasc Pharmacol 44:639–644. doi:10.1097/00005344-200412000-00003

    Article  CAS  PubMed  Google Scholar 

  27. Auchampach JA, Maruyama M, Cavero I et al (1992) Pharmacological evidence for a role of ATP-dependent potassium channels in myocardial stunning. Circulation 86:311–319

    CAS  PubMed  Google Scholar 

  28. Miyamae M, Fujiwara H, Kida M et al (1993) Preconditioning improves energy metabolism during reperfusion but does not attenuate myocardial stunning in porcine hearts. Circulation 88:223–234

    CAS  PubMed  Google Scholar 

  29. Cohen MV, Liu GS, Downey JM (1991) Preconditioning causes improved wall motion as well as smaller infarcts after transient coronary occlusion in rabbits. Circulation 84:341–349

    CAS  PubMed  Google Scholar 

  30. Fralix TA, Steenbergen C, London RE et al (1993) Glibenclamide does not abolish the protective effect of preconditioning on stunning in the isolated perfused rat heart. Cardiovasc Res 27:630–637. doi:10.1093/cvr/27.4.630

    Article  CAS  PubMed  Google Scholar 

  31. Schaper W (1971) Coronary occlusion in mammals. In: Black DAK (ed) Clinical studies. Vol 1: the collateral circulation of the heart. North-Holland, Amsterdam, pp 19–28

    Google Scholar 

  32. Suzuki M, Saito T, Sato T et al (2003) Cardioprotective effect of diazoxide is mediated by activation of sarcolemmal but not mitochondrial ATP-sensitive potassium channels in mice. Circulation 107:682–685. doi:10.1161/01.CIR.0000055187.67365.81

    Article  CAS  PubMed  Google Scholar 

  33. Garlid KD, Paucek P, Yarov-Yarovoy V et al (1996) The mitochondrial KATP channel as a receptor for potassium channel openers. J Biol Chem 271:8796–8799. doi:10.1074/jbc.271.15.8796

    Article  CAS  PubMed  Google Scholar 

  34. Hausenloy DJ, Wynne AM, Yellon DM (2007) Ischemic preconditioning targets the reperfusion phase. Basic Res Cardiol 102:445–452. doi:10.1007/s00395-007-0656-1

    Article  CAS  PubMed  Google Scholar 

  35. Pagel PS, Krolikowski JG, Pratt PF Jr et al (2008) Reactive oxygen species and mitochondrial adenosine triphosphate-regulated potassium channels mediate helium-induced preconditioning against myocardial infarction in vivo. J Cardiothorac Vasc Anesth 22:554–559. doi:10.1053/j.jvca.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  36. Brennan JP, Southworth R, Medina RA et al (2006) Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc Res 72:313–321. doi:10.1016/j.cardiores.2006.07.019

    Article  CAS  PubMed  Google Scholar 

  37. An J, Bosnjak ZJ, Jiang MT (2007) Myocardial protection by isoflurane preconditioning preserves Ca2+ cycling proteins independent of sarcolemmal and mitochondrial KATP channels. Anesth Analg 105:1207–1213. doi:10.1213/01.ane.0000281053.13929.d0

    Article  CAS  PubMed  Google Scholar 

  38. Shigematsu S, Sato T, Abe T et al (1995) Pharmacological evidence for the persistent activation of ATP-sensitive K+ channels in early phase of reperfusion and its protective role against myocardial stunning. Circulation 92:2266–2275

    CAS  PubMed  Google Scholar 

  39. Maruyama I, Tomiyama Y, Maruyama K et al (2006) Effects of mitiglinide and sulfonylureas in isolated canine coronary arteries and perfused rat hearts. Eur J Pharmacol 531:194–200. doi:10.1016/j.ejphar.2005.11.060

    Article  CAS  PubMed  Google Scholar 

  40. Grover GJ, Dzwonczyk S, Sleph PG et al (1993) The ATP-sensitive potassium channel blocker glibenclamide (glyburide) does not abolish preconditioning in isolated ischemic rat hearts. J Pharmacol Exp Ther 265:559–564

    CAS  PubMed  Google Scholar 

  41. Gross GJ, Hsu A, Falck JR, Nithipatikom K (2007) Mechanisms by which epoxyeicosatrienoic acids (EETs) elicit cardioprotection in rat hearts. J Mol Cell Cardiol 42:687–691. doi:10.1016/j.yjmcc.2006.11.020

    Article  CAS  PubMed  Google Scholar 

  42. Lim KHH, Javadov SA, Das M et al (2002) The effects of ischaemic preconditioning, diazoxide and 5-hydroxydecanoate on rat heart mitochondrial volume and respiration. J Physiol 545:961–974. doi:10.1113/jphysiol.2002.031484

    Article  CAS  PubMed  Google Scholar 

  43. Churchill EN, Mochly-Rosen D (2007) The roles of PKCδ and ε isoenzymes in the regulation of myocardial ischaemia/reperfusion injury. Biochem Soc Trans 35:1040–1042. doi:10.1042/BST0351040

    Article  CAS  PubMed  Google Scholar 

  44. Miller MJ (2001) Preconditioning for cardioprotection against ischemia reperfusion injury: the roles of nitric oxide, reactive oxygen species, heat shock proteins, reactive hyperemia and antioxidants—a mini review. Can J Cardiol 17:1075–1082

    CAS  PubMed  Google Scholar 

  45. Schulz R, Kelm M, Heusch G (2004) Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61:402–441. doi:10.1016/j.cardiores.2003.09.019

    Article  CAS  PubMed  Google Scholar 

  46. Gelpi RJ, Morales C, Cohen MV, Downey JM (2002) Xanthine oxidase contributes to preconditioning’s preservation of left ventricular developed pressure in isolated rat heart: developed pressure may not be an appropriate end-point for studies of preconditioning. Basic Res Cardiol 97:40–46. doi:10.1007/s395-002-8386-0

    Article  CAS  PubMed  Google Scholar 

  47. Chen XB, Orskov ER, Hovell FD (1990) Excretion of purine derivatives by ruminants: endogenous excretion, differences between cattle and sheep. Br J Nutr 63:121–129. doi:10.1079/BJN19900097

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank María Inés Besansón and Pedro Iguain for performing the anesthesia and follow-up of the animals during surgery, Marta Tealdo, and technicians: Juan Mansilla, Osvaldo Sosa, and Juan Ocampo for animal care, and Julio Martínez and Fabián Gauna for technical assistance. We also gratefully acknowledge the donation of HMR1098 by Sanofi-aventis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Catalina Lascano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lascano, E.C., Negroni, J.A. & del Valle, H.F. Early preconditioning protection against stunning in conscious sheep. Role of KATP channels. Mol Cell Biochem 331, 247–257 (2009). https://doi.org/10.1007/s11010-009-0166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0166-6

Keywords

Navigation